МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

На правах рукописи

Mountand

МИЛОВАНОВ АЛЕКСАНДР ВАЛЕРИЕВИЧ

AMПЕЛО-ГЕНЕТИЧЕСКИЙ АНАЛИЗ СОРТОВ И КЛОНОВ VITIS VINIFERA L.

06.01.05 - Селекция и семеноводство сельскохозяйственных растений

Диссертация

на соискание ученой степени кандидата биологических наук

Научный руководитель:

доктор биологических наук, профессор Л. П. Трошин

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	4
Раздел 1. ОБЗОР ЛИТЕРАТУРЫ	8
1.1 Основы ДНК-маркирования генотипов винограда	8
1.2 Методы исследования полиморфизма ДНК	10
1.3 Ампело-генетический анализ сортов и клонов винограда	15
Раздел 2. УСЛОВИЯ, ОБЪЕКТЫ И МЕТОДИКА ПРОВЕДЕНИЯ	
ИССЛЕДОВАНИЙ	23
2.1 Исходный материал и методы его исследования	23
2.2 Агротехнологический фон и условия произрастания геноти-	
пов, отобранных для молекулярно-генетического анализа	26
2.3 Подготовка растительного материала и выделение ДНК	33
2.4 Молекулярно-генетические маркеры, использованные	
в работе по отбору протоклонов винограда	39
2.5 Проведение полимеразной цепной реакции, электрофореза,	
визуализации продуктов амплификации и анализ фотографий	
электрофореграмм	40
2.6 Использование мультиплексов в изучении аборигенных	
сортов винограда, сохраненных в Анапской зональной опытной	
станции СКЗНИИСВиВ	42
2.7 Статистическая обработка данных	46
Раздел 3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ	47
3.1 Анализ генетического разнообразия сортов и клонов	
винограда с использованием микросателлитных маркеров	47
3.1.1 Анализ частот встречаемости аллелей в популяции	
клонов	57
3.1.2 Частота встречаемости всех аллелей изученных SSR-	
локусов идентифицированных в популяции клонов	61

3.1.3 Кластеризация отдельных групп сортов и клонов	
при помощи программы DARwin 6	62
3.1.4 Анализ генетического разнообразия аборигенных	
сортов винограда с использованием микросателлитных	
маркеров	67
3.1.5 Частота встречаемости всех идентифицированных ал-	
лелей изученных SSR-локусов среди аборигенных сортов и	
дикорастущего винограда	81
3.1.6 Кластеризация аборигенных сортов винограда	
при помощи программы DARwin 6	93
ЗАКЛЮЧЕНИЕ	96
ПРЕДЛОЖЕНИЯ ДЛЯ ПРАКТИЧЕСКОЙ СЕЛЕКЦИИ	97
СПИСОК ЛИТЕРАТУРЫ	98
ПРИЛОЖЕНИЯ	119

ВВЕДЕНИЕ

Актуальность проблемы. Культурный виноград *Vitis vinifera* subsp. *sativa* D. C. является одной из наиболее ценных плодово-ягодных культур в мире по экономической эффективности и площади выращивания. Литературные, археологические и палео-ботанические источники позволяют понять распространение виноградарства в Европе и, в частности, в Российской Федерации, начиная с территории Кавказа [1, 9].

Сорта винограда, которые возделываются веками в традиционных винодельческих регионах, все чаще заменяются более высокопродуктивными клонами. Генетическое разнообразие, накопившееся за столетия культивирования традиционных сортов, крайне важно для улучшения их генома. Аборигенные сорта, вытесняемые новыми, представляют собой огромный, еще не раскрытый пласт знаний и значительный источник ценных генов для селекционной науки. Поэтому так важна молекулярно-генетическая идентификация коллекции АЗОСВиВ (Анапская зональная опытная станция виноградарства и виноделия), позволяющая не только узнать ее биологическое разнообразие, но также установить сортосоответствие в сравнении с другими известными мировыми коллекциями. Описание аборигенных сортов и дикорастущего винограда по большому спектру генетических признаков позволит не только создать ДНК-паспорта генотипов, но и использовать эти данные для установления родственных связей между ними и при поисках их родителей, что станет неоценимой помощью селекционерам во время подбора родительских пар для скрещиваний.

Обширная исследовательская программа проводится во всех странах развитого виноградарства на распространенных известных сортах для отбора «чистокровных» высокоурожайных и высококачественных генотипов. Целью проведения этих исследований является обеспечение материальной и теоретической базы для обоснования совершенствования клоновой селекции и повышения ее результативности [82, 156].

С развитием молекулярной биологии возникла возможность ускорения селекционного процесса на базе использования молекулярно-генетических методов, в результате чего появилась маркерная селекция.

Сортовой состав популяций Краснодарского края многообразен. Распространение современной методологии клоновой селекции выявило перспективность использования молекулярно-генетических методов анализа, что повысило ее эффективность, особенно после открытия наличия микросателлитных аллелей, набор которых специфичен для каждого сорта винограда.

Первые результаты по идентификации клонов молекулярными маркерами показали, что такие НИР ограничиваются лишь набором использованных локусов. Таким образом, при использовании большого количества маркеров вероятность найти различающиеся аллели повышается [145].

Цель диссертационной работы. Целью исследования представленной работы является молекулярно-генетический анализ сортов и клонов *Vitis vinifera sativa* D. C. для обоснованности отбора протоклонов и создание базы молекулярно-генетических данных о дикорастущем винограде Краснодарского края, Республики Адыгея и аборигенных сортах, сохраненных на Анапской зональной опытной станции виноградарства и виноделия (АЗОС ВиВ).

Основные задачи исследований:

- 1. Оценить полиморфизм сортов и клонов винограда на основе использования 6 микросателлитных локусов в качестве маркерной системы.
- 2. Провести кластеризацию клонов методом «Одиночной связи» для определения степени генетического родства среди них.
- 3. Оценить полиморфизм дикорастущего винограда и аборигенных сортов на основе использования 9 основных и 16 дополнительных микросателлитных локусов в качестве маркерной системы.
- 4. Осуществить кластеризацию аборигенных сортов и дикорастущего винограда методом «Одиночной связи» для определения степени их генетического родства.

Основные положения, выносимые на защиту:

- 1. Ампело-генетическая характеристика производственных сортов и клонов винограда Каберне-Совиньон, Рислинг, Пино серый, Алиготе и Мерло.
- 2. Ампело-генетическая характеристика некоторых интродуцентов и новых селекционных сортов (Виктор, Солярис, Богатяновский, Каберне карбон, Антоний Великий, Преображение, Первозванный, Каберне кортис, Монарх, Аркадия розовая, Гелиос, Анюта, Ливия и Долгожданный).
- 3. Ампело-генетическая характеристика чистосортных и близкородственных аборигенных сортов винограда, культивируемых в АЗОС ВиВ, по молекулярно-генетическим признакам.
- 4. Ампело-генетическая характеристика дикорастущих форм винограда *Vitis silvestris* Gmel. Краснодарского края и Республики Адыгея и гибридных генотипов Абинск № 3, № 5, № 7, № 8 и № 9.

Научная новизна исследований. В данной работе впервые были исследованы дикорастущие формы и аборигенные сорта винограда России по большому набору молекулярно-генетических маркеров, а также исследованы новые группы клонов столовых и технических сортов Антоний Великий, Анюта, Гелиос, Долгожданный и Ливия с использованием микросателлитных маркеров и выполнена оценка внутрипопуляционного молекулярно-генетического родства среди них.

Практическое значение работы. С помощью усовершенствованной методики ДНК-маркирования оценено молекулярно-генетическое разнообразие исследованных в работе сортов и клонов винограда, отобраны высокопродуктивные протоклоны и переданы лучшие под названиями Пиногрик и Семидесятилетие Победы (приложения A, Б, С и D) на государственное испытание Российской Федерации. Эти высокопродуктивные генотипы представляют значительный интерес для селекции и сортоулучшения. В соавторстве созданы два сорта, что подтверждено соответствующими справками: Пиногрик / Л. П. Трошин, А. С. Звягин, А. В. Милованов и др. // Заявка на патент № 63160 от 29.11.2013; Семидесятилетие Победы / Л. П. Трошин, А. В. Милованов и др. //

Заявка на патент № 6672 от 15.01.2015. Создана база молекулярногенетических данных об аборигенных сортах и дикорастущем винограде по 24 микросателлитным маркерам, а также оценено их родство, выявлены синонимы и клоны, подтверждена чистосортность материала.

Апробация работы. Результаты исследований доложены на заседаниях кафедры виноградарства аграрного университета, региональных, всероссийских научно-практических, международных конференциях и симпозиумах (2013—2015 гг., включая 2015 г.). Доклад по теме диссертации удостоен 3 места в 3 (финальном) этапе Всероссийского конкурса на лучшую научную работу среди студентов, аспирантов и молодых ученых вузов Минсельхоза РФ в номинации «Биологические науки».Публикации. По материалам диссертации опубликовано 9 научных работ в периодических изданиях, рекомендованных ВАК, в том числе 1 на английском языке в журнале Vitis, который входит в базу данных статей Scopus.

Заявки и патенты. В Госсорткомиссию РФ передано 4 заявки на технические сорта: Пиногрик, Семидесятилетие Победы, Сенной К и Анри К.

Структура и объем диссертации. Диссертация состоит из введения, обзора литературы, описания материалов и методов, включает изложение и обсуждение результатов, выводов, предложений для практической селекции, списка литературы и приложений. Работа изложена на 226 страницах машинописного текста, содержит 50 таблиц, 102 рисунка и 29 приложений. Список литературы включает 183 источника, в том числе 109 – иностранных авторов.

Раздел 1. ОБЗОР ЛИТЕРАТУРЫ

1.1 Основы ДНК-маркирования генотипов винограда

Внутривидовая гибридизация применяется в течение многих веков. Результатами ее являются многие сорта сельскохозяйственных культур, в том числе винограда. Анализ литературных источников показывает, что полученные результаты в этом направлении, хотя и значительные, но не решают всех проблем виноградарской отрасли.

Основная причина невысокой эффективности селекции винограда — недостаток знаний о биологических особенностях сортов и генетически обусловленных механизмах передачи признаков и свойств потомству. Это, конечно, не означает, что возможности межсортовой гибридизации исчерпаны и что от нее следует отказаться как от устаревшего и непродуктивного метода. В последнее время получено немало сортов, обладающих комплексом ценных свойств, которые были выделены методами клоновой селекции, они регистрируются и обогащают промышленный сортимент. Это стало возможно благодаря генетической изменчивости клонов винограда [8, 13, 68, 69].

Генетическая изменчивость сортов винограда, выраженная в возникновении мутаций и неоднородности исходного материала, выражается в фенотипическом варьировании морфологических признаков, например, темпом роста, формирования органов, физиологических свойствах, изменяющих жизнеспособность организмов [31, 44, 55, 56]. Или фенотипически не выражается, например, в случаях изменения биохимических свойств, регулирующих синтез химических веществ [16, 27, 36]. Поэтому отбор можно вести по всем вышеперечисленным признакам и свойствам, особенно выделяя из них хозяйственно ценные. Однако, морфологические, физиологические и биохимические признаки находятся в корреляции с генотипом и изменяются вместе с ним [14, 64, 66, 67]. Эти изменения могут быть вызваны влиянием внешних условий, поэтому установить причину варьирования не всегда удается с до-

статочной точностью [23, 35, 54, 75]. Для этого необходимо использовать новые методы исследования сортов, такие как ДНК-маркирование [25, 42, 46, 52].

ДНК-маркеры – характеристика генотипа, не зависящая от фенотипа, что обеспечивает богатство полиморфизмов, позволяющих идентифицировать сорта и строить точные генетические карты во многих высших растениях [12, 15, 34]. Высокое генетическое разнообразие у винограда, распространенного по всему миру, вызывает интерес к оценке генеалогии внутри рода Vitis, а также необходимость улучшения распознающих систем, пригодных для идентификации виноградных сортов [51, 73, 74]. Это поощряет попытку внедрять и использовать данные о генотипах, из которых можно создавать резерв для улучшения существующего ампелографического разнообразия [4, 33, 70, 71, 134].

На данный момент, генетический резерв винограда — это смесь древних и недавно выведенных сортов [3, 9]. Перед тем как новые сорта полностью заменят старые, важно идентифицировать ценные древние генотипы и редкие формы. В настоящее время сорта идентифицируются различными молекулярными маркерами, такими как микросателлиты. Они представляют собой короткие последовательности ДНК, повторяющиеся несколько раз при каждом локусе. В связи с ошибками прочтения, полимеразы, во время репликации ДНК, создали множество аллелей, которые различны по длине из-за разного количества повторов последовательности. В растениях микросателлиты встречаются часто — один на каждые 1—2,4 тыс. нуклеотидов в таких видах, как арабидопсис, рис, соя, кукуруза и пшеница. Множество SSRs было обнаружено в винограде, а также выявлена высокая гетерозиготность, что повышает полиморфизм микросателлитных маркеров и ведёт к решению многих проблем, связанных с клоновой и сортовой идентификацией, а также анализом генеалогии [28, 29, 30, 183].

Молекулярные маркеры имеют огромный потенциал по поиску генетических различий между генотипами и определению разнообразия между клона-

ми. Среди молекулярных маркеров, SSR-маркеры являются наиболее подходящими из-за их кодоминантности, огромного числа повторов и высокой частоты в селективно нейтральной области. Высоко насыщенные карты сцепления на основе одних только микросателлитных маркеров, а также их совместное использование с другими типами маркеров доступных в винограде. Микросателлитные маркеры оказались полезными для установления «личности» генотипов, фингерпринтинга и анализа разнообразия подвоев и сортов, а также межвидовых гибридов [78, 107].

В последние годы создание ДНК-отпечатков, показало себя очень полезным для картирования геномов и изучения биоразнообразия. Достаточно высокий полиморфизм позволяет получать большое разнообразие отпечатков при известном наборе генетических маркеров. Они доказали свое преимущество перед биохимическими и фенотипическими маркерами, которые имеют низкую величину полиморфизма. В основном, ДНК методы основаны на обнаружении полиморфных геномных последовательностей для внутренних сайтов рестрикции путём гибридизации клонированных зондов с ДНК. Например, длина полиморфных рестрикционных фрагментов (AFLP), случайно амплифицированная полиморфная ДНК (RAPD) или амплификация между простыми повторами последовательностей или микросателитов (SSR). Метод амплификации полиморфных фрагментов опирается на полиморфизм в сайтах узнавания для ферментов рестрикции, но с начала использования праймеров есть необходимость в анализе последовательности ДНК для обнаружения полиморфизмов.

1.2 Методы исследования полиморфизма ДНК

На сегодняшний день существует огромное количество методов исследования ДНК. Каждый из них предоставляет большое количество возможностей получить ответы на бесконечное количество вопросов. В данном разделе диссертации мы рассмотрим только те, которые использовались в процессе работы по исследованию полиморфизма генетических ресурсов винограда. Обзор будет идти в той последовательности, в которой обычно направлено исследо-

вание: выделение ДНК, ПЦР-анализ и визуализация продуктов амплификации или фрагментарный анализ.

Наиболее простой способ **выделения** Д**НК** СТАБ-методом был описан ещё в 1994 году в статье «Простой и эффективный способ для выделения ДНК из виноградных растений» (авторы Муххамад Л., Гуанг-Нинг И., Норман Ф. и др.) [137].

Развитие методов потребовало более «чистую» ДНК. Приведенный ниже метод выделения дает достаточно большой «урожай» ДНК, но имеющей примеси-загрязнители [143, 170]. Поэтому при дальнейшей работе этот метод был улучшен применением бета-меркаптоэтанола и поливинилпропиллидона, которые позволяют для очистки ДНК от фенольных соединений и соединений ДНК с сахаридами [77, 100, 101]. Такой метод называют «модифицированным СТАБ-методом». Он позволяет выделять ДНК не только из свежих листьев, но и из гербарных и мумифицированных, т. е. даёт возможность изучать очень старые препараты листьев, что крайне важно при изучении происхождения видов и филогенеза [17, 19, 103].

Наличие загрязнителей сильно влияет на использование ДНК в исследованиях из-за ингибирования процесса реакции в целом и снижения активности Таq-полимеразы, а также из-за плохой очистки ДНК может меньше храниться из-за нестабильности. Поэтому так важно не только выделить большое количество ДНК, но и правильно и хорошо её очистить [93, 114, 155].

В статьях, приведенных выше, описывается метод, дающий высокое количество чистой ДНК, которая долго хранится, но этот способ выделения имеет ряд отрицательных факторов. Во-первых, тратится много времени, во-вторых, используемые вещества, такие как хлороформ, изоамиловый спирт, бетамеркаптоэтанол являются крайне вредными для организма человека.

Такие чувства, как страх за свое здоровье, желание сделать больше за одинаковое количество времени, создали наборы для выделения нуклеиновых кислот различными методами. В настоящее время это направление активно

развивается, создаются «киты», позволяющие делать больше, быстрее и безопаснее, что сказывается не только на здоровье и работоспособности рабочих, но и на финансовом положении лаборатории, так как исключаются затраты на защитное снаряжение лаборантов.

К примеру, выделение ДНК с использованием PeqGOLD PLANT DNA mini KIT — это дорогой, но очень эффективный способ выделения и очистки ДНК. Если при использовании вышеописанных методик медленно, но верно выделялось 12 образцов, то при применении данного набора и двух центрифуг выделялось 24 биотипа сразу [40, 123].

ПЦР-анализ. ПЦР – полимеразная цепная реакция. Этот этап был разработан Кэри Мюллисом, за что в 1993 году он был удостоен Нобелевской премии по химии [144].

Следует упомянуть, что для более эффективной работы разработаны наборы и для ПЦР-реакций, тот же Peqlab-Kit. Результатом этого явилась унификация параметров реакции, так теперь не надо подбирать для каждого праймера свою температуру отжига [141].

На сегодня разработано огромное количество праймеров, используемых в работе. Они используются как для генотипирования микросателлитных участков ДНК, не связанных с кодирующими последовательностями, так и для идентификации генов устойчивости к вредителям и болезням [139, 160].

Для большего упрощения и убыстрения работы были разработаны мультиплексы — подборка групп праймеров, гибридизирующихся с цепью исследуемой ДНК одновременно. Их подбирают таким образом, чтобы они не перекрывали друг друга длинами амплифицированных аллелей. Это крайне важно при анализе, дабы не возникло путаницы при дифференциации продуктов амплификации. При использовании мультиплексов в гель-электрофорезе используют Touch Down PCR. Это такая разновидность полимеразной цепной реакции, где в первых циклах температура отжига праймера выше необходимой, а в последующих она снижается до оптимальной. Таким образом, убираются неспецифичные элементы отжига, мешающие различать продукты амплифи-

кации. Следует заметить, что в капиллярном электрофорезе аллели могут накладываться друг на друга, но при отображении в программе GeneMapper прекрасно различимы по цветам, поэтому они могут применяться вместе [125].

Существует много видов ПЦР-реакции. На мой взгляд, следует обратить внимание на ПЦР в реальном времени. Это далеко не дешёвый метод, но он позволяет определить, где и сколько ПЦР продукта амплифицировалось, что избавляет от проверки наличия результатов на любом электрофорезе.

В данном методе используют флюоресцентно-меченые праймеры или ДНК-зонды. Также используется краситель SybrGreen 1, он обеспечивает достаточно простой и экономичный способ детекции, без необходимости применения зондов или специальных праймеров [125].

Очень важно, что qPCR (количественная ПЦР) можно комбинировать с ОТ-ПЦР (обратно-транскрипционная ПЦР) для измерения малых количеств мРНК, что позволяет исследовать количественную информацию о содержании мРНК в клетке и, следовательно, позволяет судить о величине экспрессии гена в клетке или ткани.

Все полученные данные выводятся на экран компьютера и обрабатываются в реальном времени.

После амплификации следует визуализировать полученные ПЦРпродукты.

Визуализация результатов ПЦР. Как экспериментальный метод электрофорез был разработан отечественными учеными, профессорами Московского университета П. И. Стаховым и Ф.Ф. Рейссом в 1809 году.

На данный момент существует большое количество публикаций, описывающих или конкретно электрофорез в полиакриламидном геле или же статьи, повествующие о работах, в которых гель-электрофорез применялся как основной метод разделения продуктов амплификации или же белков [90, 112, 168].

Самый распространенный в мире метод оценки длины амплифицированных фрагментов — это электрофорез в полиакриламидном геле. Но с этим методом связано большое количество проблем и трудностей в использовании. Например, плохая полимеризация акриламидного геля, когда с виду он без изъянов, а после просвечивания ультрафиолетом оказывается, что образцы уползли в край спейсера. Также возможно, что ДНК просто растеклась по акриламиду во время вымачивании в растворе бромистого этидия. Или же произошло отключение электроэнергии и после четырех часов электрофореза, оказывается, что все образцы выстроились в одну линию, где невозможно чтолибо идентифицировать [24, 43].

В 1960-х годах был предложен метод секвенирования биополимеров – установление их нуклеотидной или аминокислотной последовательности. В результате чего получают строение первичной структуры молекулы. Обычно, размеры секвенируемых участков ДНК 100 пар нуклеотидов (при использовании методов next-generation sequencing) и 1000 пар, при секвенировании по Сенгеру. В итоге получают последовательности участков генов, всю мРНК и даже целые геномы [2].

При секвенировании обычно применяют методы Эдмана, Сэнгера и другие. До начала сиквенса производят амплификацию участка ДНК при помощи ПЦР, последовательность которого нужно установить.

Метод определения первичной последовательности пептидов разработан в 1950—1956 годах Виктором Эдманом. Обрабатывается исследуемый пептид специальным набором реагентов, это приводит к отщеплению одной аминокислоты с N-конца. Циклическое повторение реакции и анализ получаемой информации дают знания об исследуемом пептиде. В настоящее время он практически не применяется из-за неколичественного протекания реакции и побочных продуктов [47].

Другой метод секвенирования был открыт Фредериком Сенгером в 1977 году, за что он был удостоен Нобелевской премии по химии в 1980 году. Так-

же метод известен как «метод обрыва цепи». Принцип метода заключается в том, что одна из цепочек ДНК является матрицей для синтеза второй [151].

Капиллярный электрофорез. Если в вышеописанных методах разделение происходит в полиакриламидной пластине, то здесь уже происходит разделение ионов по заряду, в тонком капилляре, заполненном электролитом.

Детектирование с помощью флуоресценции используют для образцов, имеющих собственную флуоресценцию или же модифицированных химическими метками. Данный способ обеспечивает высокую чувствительность. Также используют детектирование флуоресценции, вызванное лазером, подобные системы могут детектировать в пределах 10^{-18} – 10^{-21} моль [157].

Таким образом, можно сделать вывод, что за последнее время было изобретено множество способов исследования ДНК.

1.3 Ампело-генетический анализ сортов и клонов винограда

Комбинированные маркерные системы являются отличными дескрипторами, описывающими сорта винограда. Использование их совместно с фенотипическими характеристиками даёт наиболее полную картину о состоянии совокупности внешних и внутренних признаков виноградной лозы.

В настоящее время изучение генофонда и фенотипического разнообразия винограда — приоритетная цель для ученых многих стран мира. Этот процесс происходит по признакам, принятым на вооружение под эгидой Международной организации винограда и вина. По большей части, это фенотипические признаки, такие как окраска и форма ягод, цвет и вкус вина, наличие антоциана, биохимические свойства, но большинство исследователей склоняются к тому, что следует использовать молекулярно-генетические маркеры.

Проблема дифференциации клонов винограда, отбор протоклонов и выделение из них самостоятельных сортов существует давно.

В практике виноградарства известны случаи изменчивости отдельных свойств и признаков. Древнеримские ученые Палладий и Колумелла, наблю-

дая такие факты, советовали использовать их в практически полезных для человека целях. Колумелла, например, писал, что следует черенковать и использовать в производстве самые их плодородные части. Использовать клоновую селекцию советовали такие виноградари Швейцарии, Германии и Франции как Казенава, Гюйо, Каррьер, Сарториус, Мюллер-Тургау. В нашей стране основоположниками ее были С. А. Мельник, А. С. Мержаниан, М. П. Цебрия и другие. Настойчиво рекомендовал применять отбор наиболее продуктивных растений И. В. Мичурин: «Тщательной селекцией (отбором) черенков, повторением отводки лучших частей лозы, сравнительно короткой обрезкой и посадкой на лучшую почву следует способствовать развитию лучших качеств» — писал он [7].

На данный момент, клоновой селекции винограда посвящено множество работ, признанных мировой научной элитой. Работа по дифференциации клонов винограда включает в себя изучение фенотипической и генотипической изменчивости. Иногда фенотипа недостаточно, чтобы отличить сорта, тогда на помощь приходят молекулярно-генетические маркеры [15, 26, 32, 50].

В нашей стране методология проведения клоновой селекции винограда разработана профессором А. С. Мержанианом. На основании многолетних опытов и литературных данных о сортах Каберне-Совиньон, Рислинг, Алиготе, он пришел к выводу, что отбор клонов надо вести учитывая соотношение хозяйственно-ценных и морфологических признаков [49, 58]. Их он разделил на три группы: мутации, модификации (не передаются вегетативному потомству) и длительные модификации (передаются вегетативному потомству). Далее, этот метод был улучшен применением использования многомерного статистического анализа и технологии in vitro, что позволило поднять результативность клоновой селекции [57, 65].

Наиболее традиционным считается метод оценки полиморфизма по морфологическим признакам листьев среднего яруса кроны [10, 11]. В ампелографии полиморфизм — это явление биоразнообразия, одновременное существование нескольких форм растений, отличающихся друг от друга генотипи-

чески и фенотипически и, таким образом, наличие клоновой изменчивости [1, 5, 6]. Гетерогенный полиморфизм сортов и клонов имеет большое практическое применение, так как они обеспечивают высокую экономическую отдачу при правильном их использовании. В статье по исследованию различных групп фенотипов сортов Пино и Рислинг (Трошин Л. П., Луценко Е. В, Подваленко П. П., Звягин А. С.) показано различие фенотипов групп винограда 231 учетного куста по 10 листовым признакам [61].

Была проведена оценка полиморфизма сортогруппы Мерло (Трошин Л. П., Звягин А., Сидоренко Д.), на базе учебного хозяйства «Кубань» Кубанского государственного аграрного университета. В процессе работы авторами установлено, что суммарно незначительное отличие по каждому признаку, в комплексном анализе даёт достаточно большую разницу при отборе клонов [59].

Во многих статьях подчеркивается актуальность современной клоновой селекции как методологии по улучшению существующих сортов. Этой проблемой занимаются учёные разных стран и континентов: США, Франция, Германия, Австрия, Венгрия, Украина и др. В нашей стране этому направлению исследований отводятся отдельные темы научно-исследовательских работ, дипломов и диссертаций [97, 173, 181].

Появление ДНК-маркеров произвело взрыв в клоновой селекции. Возможности ДНК-фингерпринтинга практически безграничны, они позволяют не только отличить друг от друга виноградные растения по каким-либо признакам, будь то гены или микросателлитные последовательности, но и создавать эталоны, с которыми можно сравнивать новые сорта и клоны [37, 45, 72].

Высокая изменчивость микросателлитов даёт возможность дифференцировать клоны внутри популяции [73, 80, 102]. Применение этого метода привело к ускорению селекционного процесса. Вместе с идентификацией фенотипа этот метод даёт огромное преимущество [133, 158 162].

Шестьдесят два иранских сорта были проанализированы по девяти микросателлитным маркерам. Было обнаружено наличие от 4 до 16 аллелей на локус в группах генотипов. Фенограммы, созданные для поиска различий среди сортов и клонов выделили три группы, в которые были собраны все выбранные образцы. Среди иранских столовых сортов были обнаружены синонимы и омонимы [98].

В северо-западной части Испании, на астурианских виноградниках, выращивается много автохтонных сортов винограда. В связи со старостью виноградников, они характеризуются сортосмесью. С целью различения этих сортов и отбора перспективных протоклонов винограда, были проведены исследования по генотипированию 62 клонов виноградной лозы. Для генотипирования использовали 6 микросателлитных маркеров, отбор проводили по результатам трёхлетных фенологических наблюдений. По итогам исследования 62 клона были переданы в селекционный процесс [129].

Огромная работа была проведена Министерством сельского хозяйства США по генотипированию 3600 генотипов 35 видов винограда. Для исследования использовали 550 праймерных комбинаций. Было обнаружено от 16 до 38 различных аллелей на локус. Отсутствие аллелей не было обнаружено. В результате исследования были созданы ДНК-паспорта выбранных клонов, также обнаружены два сорта, показавшие одинаковые аллели, а также выявлена высокая полезность SSR маркирования для винограда [175].

Созданы карты сцепления признаков при помощи SSR и SNP маркеров основных популяций винограда, таких как Сирах, Пино нуар, Гренаш, Каберне-Совиньон и Рислинг. В общей сложности для создания карты было использовано 1134 молекулярных маркера. Данные карты могут служить отличным инструментом в селекции виноградной лозы [156].

В Хорватии проводится ежегодная работа по выведению новых сортов и отбору протоклонов из старых образцов. Так, в соответствии с международной программой GrapeGen 06 на факультете агрономии в университете Загреба при помощи совместных методов фенотипического и генотипического анализа уже отобрано сто сортов. Была запущена не только клоновая селекция по от-

бору продуктивных клонов, но и фитосанитарная селекция наиболее устойчивых сортов к вредителям и болезням [140].

В Турции ведется активная работа по генотипированию сортов и клонов винограда. Например, в 2012 году 23 гибрида были отобраны по их превосходным сортовым характеристикам. Их исследовали в два этапа: по морфофизиологическим и генетическим параметрам. Фенотипирование проводили в соответствии со стандартной методикой OIV. В генотипировании использовали 20 микросателлитных маркеров, которые показали размер аллелей от 88 до 294 пар оснований [79].

Также странами-участницами программы GeneRes являются Молдова и Румыния. В их задачу входит создание ДНК-паспортов сортов винограда бассейна Черного моря. Данная программа финансируется не только Европейским союзом, но и персонально правительством Люксембурга, что подчеркивает её значимость для мирового сообщества виноградарей [46,126].

В республике Словения широко выращивают технические сорта винограда. Более 50 редких традиционных сортов используется в производстве. Методика их сохранности как генотипов, а также идентификация их по внешним и внутренним признакам была разработана на факультете биотехнологии Университета Любляна [20, 21, 150].

На кафедре виноградарства Кубанского государственного аграрного университета ведется активная работа по совершенствованию традиционного сортимента винограда методами клоновой селекции в комбинации со способами маркерной селекции. Многие из отобранных клонов винограда уже переданы на государственное сортоиспытание, а некоторые из них уже признаны самостоятельными сортами. Помимо этого, проводится работа по изучению аборигенных сортов винограда, произрастающих в Анапской ампелографической коллекции [18, 22, 63].

Наука не стоит на месте и поэтому произошло создание так называемых REMAP и IRAP техник для картирования генома винограда с помощью ретротранспозонных и интро-SSR маркеров. Данные методы показывают еще

большую вариабельность признаков не только между клоном и контролем, но и между клонами в популяции. Это позволяет поднять на новый уровень клоновую селекцию. Совместное использование этой техники с ампелографическими данными и SSR-маркерами, позволяет получить наиболее полное представление об изучаемом клоне [84, 108, 152].

Мобильные генетические элементы были найдены почти во всех живых организмах в гетеро-и эухроматиновых областях генома. Последствия движения этих элементов в геноме может спровоцировать расширение повторяющихся некодирующих регионов, нарушение функции гена дикого типа, ведущее к статусу псевдогена, модифицирование гена функционирования, что приводит к искажению выбираемых фенотипов и хромосомным перестройкам, приводящим к видообразованию [89, 107]. В европейском винограде наиболее известны три таких элемента Gret-1, Tvv-1 и Vine-1. Интересно, что Gret-1 и Vine-1 впервые были определены по их вставкам в регуляторные последовательности функциональных генов. В настоящее время только Gret-1 был полностью секвенирован, а также раскрыта его связь с мутациями, в результате чего в темно окрашенных сортах появляются светло окрашенные ягоды из-за его включения в промоутер VvMybA1 транскрипционного фактора, управляющего биосинтезом антоцианов в процессе созревания винограда [81, 86, 136].

Ретротранспозоны — это главные двигатели генетического разнообразия и инструменты для обнаружения изменений в геноме, возникших под их влиянием. После демонстрации того, что они часто встречаются в растительных кариотипах, были созданы различные маркерные системы для детекции полиморфизма, вызванного ими, а также анализа генетического разнообразия в популяциях [106].

Ретротранспозоны являются основным агентом эволюции генома. Были разработаны различные системы молекулярных маркеров, которые используют метод анализа этих генетических элементов и их стабильную интеграцию в дисперсные хромосомные локусы, которые полиморфны внутри каждого вида. Ключевыми методами SSAP, IRAP, REMAP, RBIP и ISBP обнаруживают сай-

ты, в которых ретротранспозоны ДНК сохраняются между семьями элементов, интегрированых в геном. Маркерные системы, использующие эти методы, могут быть легко разработаны и применимы в отсутствии обширных данных о последовательностях генома. Они предлагают доступ к динамическим и полиморфным частям генома и дополняют методы, такие как SNPs, которые нацелены, в первую очередь, на разделение генов [153].

Ретротранспозоны могут быть использованы в качестве маркеров, потому что их интеграция создаёт новые соединения между геномной ДНК и их консервативными концами. Для обнаружения полиморфизмов вставки ретротранспозона маркерные системы обычно полагаются на ПЦР-амплификации между этими концами и некоторые фланговые компоненты геномной ДНК. В этой связи были разработаны два метода: анализ ретротранспозонамикросателлит (REMAP) и внутренний полиморфизм ретротранспозона (IRAP), которые не требуют рестрикции ферментами. IRAP продукты, полученные от двух близлежащих ретротранспозонов, используются для амплификации последовательностей, стоящих перед праймерами. В REMAP амплификация между ретротранспозонными последовательностями простых повторов (микросателлитов) производит маркерные полосы [104, 105, 108].

В Испании были исследованы клоны сорта Темпоранилло с совместным использованием микросателлитных и ретротранспозонных маркеров. Всего было описано 28 клонов, из которых только один смог пройти отбор по генетическим маркерам. Учитывая, что в исследовании использовался всего один ретротранспозонный маркер, можно сделать вывод о их высоком полиморфизме [91, 174, 176, 177].

В Японии было проведено исследование по изучению влияния ретротранспозонов на окраску кожицы ягод винограда. По результатам был сделан вывод, что мутации в изменении окраски ягод могут быть вызваны ретротранспозонами, что было подтверждено молекулярно-генетическими исследованиями с применением маркеров на гены VvmybA1 и VlmybA1-1 [113]. Окраска ягоды является одной из самых главных характеристик сортов вино-

града. Это морфологическое свойство различает сорта друг от друга в момент полной зрелости [92, 171, 172]. Дополнение формы листа, грозди и окраски побега может быть достаточно, чтобы идентифицировать сорт [85, 159]. Сорта с окрашенной ягодой содержат антоцианы в эпидермисе. Количество и концентрация красящего вещества определяет их типичную окраску. VvmybA1 (Муb-связанный транскрипционный фактор) регулирует синтез антоцианов и экспрессию гена, ответственного за окраску ягоды [165, 166, 167]. Наличие ретротранспозона Gret-1 рядом с кодирующей последовательностью блокирует его экспрессию, вызывая осветление окраски кожицы [161, 163, 164].

В Италии были описаны 62 сорта по 30 SSR и 4 REMAP и 1 IRAP маркерам. В результате выявили 58 маркер-специфичных аллелей, 22 генотипспецифичные аллели и четыре REMAP и IRAP частных аллели [178]. После чего в выборке сортов были найдены синонимы и омонимы. Также был сделан вывод, что совместное использование различных маркеров показывает себя наиболее эффективно и делает идентификацию генотипов наиболее лёгкой [179, 180, 182].

Приведённый обзор литературных источников указывает на то, что на данный момент перед виноградарством мира стоят две основные проблемы. Во-первых, старые традиционные сорта не могут удовлетворить возросшие потребности населения в винопродуктах, поэтому необходимо улучшение их продуктивности. Во-вторых, современная селекция пришла к тому, что были исчерпаны практически генетические ресурсы и из-за этого селекционерам очень сложно получить новые сочетания генов в новых сортах; отсюда они нуждаются в расширении познаний об аборигенных сортах, как носителей специфических полигенов, адаптивных для ареала бассейна черного моря.

Использование технологий, включающих в себя молекулярно-генетическое описание сортов и клонов винограда, позволяет отбирать материал для клоновой селекции, а применение большого числа ДНК-маркеров необходимо для паспортизации ампелографических коллекций с целью последующей селекции.

Раздел 2. УСЛОВИЯ, ОБЪЕКТЫ И МЕТОДИКА ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ

Исследования проводились на кафедрах виноградарства, биотехнологии, биохимии и биофизики Кубанского государственного аграрного университета, а также в Юлиус-Кюн Институт (Julius-Kuhn Institute, Германия, Зибельдинген). Исследования проводились с 2011 по 2015 гг.

2.1 Исходный материал и методы его исследования

В качестве объектов исследований были использованы столовые и технические сорта винограда, а также дикорастущий виноград Краснодарского края и Республики Адыгея *Vitis silvestris* Gmel. Все образцы представлены в таблицах 1–2 в соответствии с этапом и временем проводимых исследований.

Отбор протоклонов и сортов проводился профессором Трошиным Л. П. и аспирантами Звягиным А. С. и Подваленко П. П., а методы и результаты их работы освещены в статьях [18, 50, 59, 60, 61].

Далее приводятся списки исследованных сортов и клонов винограда.

Таблица 1 – Список № 1 исследуемых технических сортов винограда

№ п/п	Название сорта	№ п/п	Название сорта		
1	2	3	4		
1	342 3 кл 6 ряд	61	Мерло 10-9		
2	Академический (Контроль)	62	Мерло 14 Грам.		
3	Академический К	63	Мерло 348		
4	Алиготе 7-10	64	Монарх 1 куст		
5	Алиготе 7РЯД-7К (Контроль)	65	Монарх 13 куст (Контроль)		
6	Антоний Великий	66	Монарх 3 кл 2 ряд		
7	Антоний Великий 30-5	67	Низина 3 кл 2 ряд 1 (Контроль)		
8	Антоний Великий 30-6 (Контроль)	68	Низина 3 кл 2 ряд 2		
9	Антоний Великий Ф	69	Первозванный 3 кл 10 ряд		
10	Анюта	70	Первозванный 4 куст (Контроль)		
11	Анюта 19 куст	71	Первозванный 6 куст		
12	Анюта 3 кл 5 ряд (Контроль)	72	Пино бел 31 (Контроль)		
13	Анюта 5 куст	73	Пино бел 32		

Продолжение таблицы 1

1	2	3	4			
14	Анюта 5-5	74	Пино белый 6			
15	Анюта 5-7	75	Пино гри 46 куст 1			
16	Анюта Ф	76	Пино гри 46 куст 2			
17	Аркадия розовая 1 кл 2 ряд	77	Пино гри 46 куст 3			
18	Аркадия розовая 10 куст	78	Пино серый 46			
19	Аркадия розовая 2-5	79	Пино черный 50-11			
20	Аркадия розовая 2-6	80	Пино черный 50-8 (Контроль)			
21	Аркадия розовая 4 куст (Контроль)	81	Пинофагр			
22	Богатяновский 2 кл 2 ряд	82	Преображение 15 куст			
23	Богатянский 6 куст	83	Преображение 3 кл 2 ряд			
24	Богатянский 9 куст (Контроль)	84	Преображение 5 куст (Контроль)			
25	Вердо черный 7-2 (Контроль)	85	Рислинг 130			
26	Вердо черный 7-6	86	Рислинг 143143111			
27	Виктор 3 кл 29 ряд	87	Рислинг 245-5			
28	Виктор 5 куст (Контроль)	88	Рислинг 245-7			
29	Виктор 7 куст	89	Рислинг 31411111			
30	Гелиос 16 куст (Контроль)	90	Рислинг 3142092			
31	Гелиос 3 кл 50 ряд	91	Рислинг 3144111			
32	Гелиос 50-5	92	Рислинг 3144111 1			
33	Гелиос 50-6	93	Рислинг 314991			
34	Гелиос 9 куст	94	Рислинг 3991			
35	Гурман ранний 3 кл 31 ряд	95	Рислинг 492			
36	Долгожданный	96	Рислинг 7111891			
37	Долгожданный 3 кл 6 ряд	97	Рислинг 7121431			
38	Долгожданный 6-8 (Контроль)	98	Рислинг 7-12-201 15-1 1-24-15			
39	Долгожданный 6-9	99	Рислинг 7151077п			
40	Долгожданный Ф	100	Рислинг 830			
41	Йоханитер 79-4	101	Рислинг 964			
42	Йоханитер 80-6 (Контроль)	102	Рислинг 991			
43	Йоханитер 10-11	103	Рислинг Алькадар 34			
44	Йоханнитер 11-11	103	Рислинг Алькадар 34а			
45	Каберне Карбон 525-4 (Контроль)	105	Рислинг Алькадар 346			
46	Каберне Карбон 525-6	106	Рислинг Алькадар 34г			
47	Каберне Кортис 271-2	107	Рислинг клон (Контроль)			
48	Каберне Кортис 271-7	107	Рошфор-Ф			
49	Каберне-Совиньон 210-4	108	Совиньон белый 23-11			
50	_	1109				
30	Каберие-Совиньон 210-8	110	Совиньон белый 23-8 (Контроль)			
51	Каберне Совиньон 15 Каб	111	Солярис 10-11 (Контроль)			
50	Мысхако(Контроль)	110	Correnvo 11 11			
52	Каберне-Совиньон 217	112	Солярис 11-11			
53	Каберне-Совиньон 5а	113	Солярис 70-16			

Окончание таблицы 1

1	2	3	4
54	Ливия (Контроль)	114	Солярис 70-21
55	Ливия 14-5	115	Супер Э Ф
56	Ливия 14-6	116	Супер экстра 21 куст
57	Ливия 3 кл 14 ряд	117	Супер экстра 3 кл 1 ряд (Контроль)
58	Ливия Ф	118	Супер экстра 9 куст
59	Ливия-Ф	119	Юбилей Новочеркасска 3 кл 7 ряд
60	Мерло 10-8 (Контроль)		

Таким образом, в первой части работы было исследовано 119 образцов ДНК.

Таблица 2 — Список исследуемых аборигенных сортов и дикорастущего винограда

№ п/п	Название сорта	№ п/п	Название сорта
1	2	3	4
1	Абинск № 3	55	Хоца цибил
2	Абинск № 5	56	Хруптун белый
3	Абинск№ 6	57	Кизиловый
4	Абинск № 7	58	Кизлярский синий
5	Абинск № 8	59	Кода гросса
6	Абинск № 9	60	Кок ала
7	Аджем мискет	61	Кок хабах
8	Аг изюм	62	Кокурдес белый
9	Аккерманский черный	63	Кокурдес черный
10	Аклык желтый	64	Красностоп анапский
11	Аленький	65	Красностоп золотовский
12	Алый терский	66	Краснянский
13	Амет Аджи Ибрам	67	Крестовский
14	Асма	68	Кукан цибил
15	Байат Капи	69	Кукановский
16	Богос зерва	70	Кумшатский белый
17	Бор кара	71	Лацу кере
18	Борю изюм	72	Лесной белый марагинский
19	Брусковатенький	73	Лизи хуцран
20	Будай шули № 2	74	Майкоп № 1
21	Буланый белый	75	Майкоп № 2
22	Чауш чабан	76	Майкоп № 3
23	Чолбер	77	Майкоп № 4
24	Чоркуца розовэ	78	Майкоп № 5
25	Даманка 1	79	Майкоп № 7
26	Даманка 7	80	Махбор цибил
27	Демир кара	81	Мисгюли кара
28	Докур	82	Мола гусейн цибил
29	Дубут	83	Мствивани мескхури
30	Джагар	84	Нарма
31	Джеват кара	85	Пухляковский
32	Джунга	86	Риш баба
33	Джварк	87	Риш баба розовый

Окончание таблицы 2

1	2	3	4
34	Ефремовский	88	Сафта дурмаз
35	Ефремовский второй	89	Сары кокур
36	Емчек изюм	90	Сары пандас
37	Галабура	91	Шабаш
38	Гендерил цибил	92	Шампанчик
39	Гок ала	93	Шампанчик бессергеневский
40	Гор. Ключ 1 новый	94	Шавбарда
41	Гюляби белый	95	Шавраны
42	Гюляби дагестанский	96	Шилохвостый
43	Ири тумут	97	Сибирьковый
44	Кабассия	98	Тавлинский черный
45	Кайтаги	99	Тавлинский поздний
46	Кандаваста	100	Толстокорый
47	Кечи эмчек черный	101	Цимлянский белый
48	Хади тумут	102	Кара тумут
49	Халиль изюм	103	Турба плотная белая
50	Харко	104	Варюшкин
51	Хатал баар	105	Яй изюм белый
52	Хатми	106	Яных зерва
53	Херсонесский	107	Желудёвый
54	Хоп халат		

Во второй части опыта было исследовано 107 генотипов.

2.2 Агротехнологический фон и условия произрастания генотипов, отобранных для молекулярно-генетического анализа

Отбор листьев исследованных в данной работе генотипов проводился на ампелоколлекции в АЗОСВиВ СКЗНИИСиВ. Ампелографическая коллекция впервые на станции была заложена в 1924 году и насчитывала тогда всего 255 сортов. С течением времени коллекция пополнялась, расширялась и неоднократно перезакладывалась. На данный момент насчитывает более 4 тыс. сортов, клонов и форм, является одной из крупнейших в мире и располагается в благоприятном для виноградарства районе России [7].

Климатические условия. Анапская зональная опытная станция располагается в Анапском районе.

Анапский район входит в первую (Анапо-Таманскую) агроклиматическую зону. Здесь благоприятные почвенно-климатические условия позволяют

культивировать виноград без укрытия на зиму, лучше организовать агротехнику, получать большой устойчивый урожай высокого качества. Виноградарство в Анапском районе является ведущей отраслью сельского хозяйства.

Анапо-Таманская зона характеризуется умеренно-континентальным климатом с неустойчивым увлажнением [1, 7].

По многолетним данным, среднегодовая температура воздуха составляет 11,9 °C. Продолжительность безморозного периода составляет 210–250 дней. Даты последнего заморозка весной: средняя – 3 апреля, самая ранняя – 7 марта, самая поздняя – 20 апреля; дата первого заморозка осенью: средняя – 8 ноября, самая ранняя – 5 октября, самая поздняя 5 – декабря [7].

Годовое количество осадков по многолетним данным составляет 417 мм. Выпадение их в течение года неравномерное: основное их количество выпадает в осенне-зимний период (236 мм). Гидротермический коэффициент равен 0,63 [7, 10].

Средняя температура июня равна 20,0 °C. Эта температура характеризует период усиленного роста вегетативных и генеративных органов куста, условия закладки плодовых почек и накопления в растении пластических материалов.

Средняя температура июля характеризует период роста ягод и составляет 23,4 °C. Среднегодовая сумма активных температур по многолетним данным 3409 °C. Продолжительность вегетационного периода составляет 250—280 дней. Среднегодовая относительная влажность воздуха составляет 76 % [7, 10].

В период вегетации возможны ветры со скоростью 15 м/с и выше. Направление ветров северо-восточное. При такой скорости ветра возможны повреждения виноградных побегов и опадение цветков. На участке, где находится ампелографическая коллекция, расположение рядов — поперёк направления ветров, поэтому вероятность повреждения многолетних насаждений не велика [7, 45].

Сезоны года. Зима (декабрь, январь и февраль). Условия радиационного режима во многом определяют циркуляционные процессы в атмосфере, влия-

ние которых на формирование зимней погоды очень велико. В зимнее время на циркуляцию оказывает влияние исландский минимум и азиатский максимум. Зима на курорте мягкая и никогда не начинается сразу. Ей предшествует частая смена похолоданий и оттепелей. Средняя температура самого холодного месяца января положительная и составляет 1,5 °C, а суточные колебания температуры воздуха находятся в пределах 4–13 °C. При внезапном вторжении северо-восточных воздушных масс (азиатский антициклон) наблюдается сильный северо-восточный ветер, вызывающий быстрое понижение температуры воздуха на несколько дней. Море не замерзает, часто штормит (до 7-8 баллов). Самая низкая температура воздуха в Анапе отмечена в январе 1940 г., она составила –26,4 °C. Число дней с морозами и заморозками незначительно и редко достигает 14–16 дней в месяц. Средняя влажность воздуха в этот период года составляет 80 %. Усиливающаяся циркуляция воздуха приводит к увеличению скорости ветра. Средняя скорость ветра составляет 7,1-7,7 м/с. Ветры со скоростью более 15 м/с наблюдаются в среднем 6 – 7 дней в месяц, хотя в отдельные годы их количество возрастает до 17 дней. Максимальная скорость ветра при шторме составляет 28–34 м/с. До 80 % всех штормовых ветров наблюдается в это время года. Преобладающее направление ветра восточное и северо-восточное [7, 11, 37].

Многолетние среднемесячные климатические показатели в Анапском регионе выглядят следующим образом (таблица 3).

Таблица 3 – Многолетние среднемесячные климатические показатели

Климатические	е Месяцы года							Всего за					
показатели	1	2	3	4	5	6	7	8	9	10	11	12	год
Температура воздуха (°C)	1,5	1,2	5,4	10,1	15,6	20,0	23,2	23,2	20,2	16,3	11,8	7,4	11,9
Количество осадков (мм)	43	37	29	32	27	34	32	27	31	36	42	47	417
Относительная влажность (%)	81	80	77	72	75	70	85	87	87	74	80	81	75
Атмосферное давление (мм рт. ст.)	65	64	63	61	61	59	58	59	58	64	65	64	762
Испарение (мм)		около 900											
Солнечное сияние (часы)	86	86	145	205	271	304	339	316	258	188	122	74	2394
Скорость ветра (м/с)	7,7	7,9	7,8	5,7	4,8	4,6	4,4	4,6	5,1	5,7	6,6	7,7	6,0

Зимой выпадает максимум осадков в виде моросящих дождей. На холодный период приходится в основном 10–13 дней с осадками в месяц. Снег наблюдается ежегодно, но под влиянием теплого и незамерзающего Чёрного моря и частых оттепелей снежный покров не устойчив и залегает не каждую зиму. В этот сезон года наблюдаются следующие атмосферные явления: туман, гололёд, град, метель и даже гроза [7, 45, 57, 60].

Гололедно-изморозные явления отмечаются обычно при близкой к нулю температуре.

Зимняя гроза — явление довольно редкое. Продолжительность гроз обычно мала и не превышает нескольких минут. Грозы обычно сопровождаются градом, шквалами или ливневыми осадками. Град для региона — явление достаточно редкое, но наблюдаться он может в любое время года.

Весна (март, апрель) наступает очень рано (уже в конце февраля), при переходе среднесуточной температуры выше пяти градусов. Отличительной особенностью весенней циркуляции атмосферы является большая изменчивость синоптических процессов и быстрая смена воздушных масс, связанная с ослаблением азиатского максимума и усилением циклонической деятельности западного переноса воздушных масс.

Вместе с Атлантикой проявляют активность и средиземноморские циклоны, которые несут тёплый влажный воздух. Однако влияние относительно холодной водной поверхности Чёрного моря обуславливает сравнительно медленное нарастание температуры воздуха и она может ещё кратковременно понижаться, поэтому число дней с заморозками и морозом доходит до 14 [7].

По сравнению с зимой, весной значительно уменьшается облачность и количество осадков, но отмечается наибольшее количество дней с туманами.

Абсолютный минимум температуры воздуха, крайне редко, может опускаться в марте до -14 °C, в апреле – до -6 °C. В дневное время средняя относительная влажность 60-65 %. Пасмурная и дождливая погода составляет до 20 % в месяц. Средняя температура воздуха равна 10,3 °C [7, 10].

Лето (май, июнь, июль, август, сентябрь) начинается с переходом среднесуточной температуры воздуха выше 15 °С. К июню положение солнца в зените достигает 70 градусов над горизонтом. На летний период приходится максимальная активность солнечной радиации за счет увеличения количества часов солнечного сияния, повышения устойчивости нижних слоев тропосферы над морем [7, 18].

Месячная норма осадков составляет 25–30 мм. Примерно с середины мая по первую декаду октября устанавливается теплый период, продолжительностью до 140 дней, из которых только 10 % можно отнести к исключительно сухим и жарким. Лето характеризуется устойчивой, малооблачной, ясной и жаркой погодой с обилием солнечных дней [7, 18].

Режим погоды летнего периода несколько увеличивает амплитуду суточного колебания температуры воздуха, но большей частью она не превышает 13 °C. Среднесуточная температура воздуха самого жаркого месяца июля составляет 23,2 °C. Максимум 38 °C. Преобладающее направление ветра в летние месяцы — юго-западное, южное и северо-восточное, при скорости ветра 4,5–4,9 м/с. Относительная влажность воздуха 50–80 % [7, 18].

Осень (октябрь, ноябрь) начинается с переходом среднесуточных температур воздуха ниже 15 °C. Она характеризуется устойчивостью атмосферных

явлений, что связано с перестройкой атмосферного давления: уменьшается число часов солнечного сияния и приток солнечной радиации. В ноябре по утрам отмечают первые заморозки, а иногда выпадает снег, редко случаются кратковременные метели. Неблагоприятные природно-климатические факторы: ранние заморозки, гололед, туманы, шквальные ветры, ливни, засуха, пыльные бури, суховеи, смерчи [1, 7, 10, 18].

Характеристика почв. Почвы на ампелографической коллекции — черноземы южные. Их характерной особенностью является значительная мощность гумусового горизонта при небольшом его содержании. Механический состав однороден по профилю — суглинистый. Водопроницаемость и влагоемкость довольно высокие [7].

Черноземы южные этой зоны характеризуются буровато-каштановой, каштановой и светло-каштановой окраской гумусового горизонта, небольшой мощностью (35–50 см). Содержание гумуса достигает 2,3–3 % в пахотном горизонте, книзу его количество убывает. Общий запас – 250 т/га. Количество азота в верхних горизонтах от 0,18 % до 0,22 %. Валовое содержание фосфора составляет 0,18 %, по профилю книзу оно падает. Содержание калия около 2,5 % [7].

Структура южных черноземов зернисто-комковатая. Прочность структуры этих черноземов по всему почвенному профилю реже опускается ниже 55–60 %. Сложение почв — рыхлое, в горизонте ВС наблюдается слабое уплотнение. Скважистость почвы в пределах 54,5 % от объема почвы. В горизонте АВ черноземы южные содержат карбонатные новообразования. Вскипание их от действия соляной кислоты начинается с 50 см. Емкость поглощения составляет 28,9 мг/экв. на 100 г почвы [7].

Гранулометрический состав черноземов южных средне- или тяжелосуглинистый, содержание физической глины в пределах профиля колеблется от 48 до 54 %. Поглощающий комплекс этих почв насыщен кальцием и магнием. Сумма обменных оснований в горизонте А достигает 250–300 ммоль-эк/кг почвы. Черноземы южные имеют относительно большие валовые запасы основных элементов питания. В пахотном слое содержится до 0,18 % азота, 0,12 % фосфора и 2,0 % калия. Эти почвы характеризуются повышенным валовым содержанием бора и несколько меньшим — марганца, меди, кобальта, молибдена, цинка . Содержание водорастворимых солей в черноземах южных весьма незначительное — меньше 0,08 %. В целом эти почвы по плодородию несколько уступают другим черноземам. Естественное плодородие почв черноморской зоны оценивается от 28–39 баллов до 58–67 баллов. Названные почвы являются благоприятными для возделывания виноградников, обеспечивающих почти всегда высокие урожаи [7].

Агротехника на опытном участке. На участках АЗОСВиВ применяется общепринятая агротехника для ампелографических насаждений. Схема посадки кустов 3,5 × 2,0 м. Культура высокоштамбовая, неукрывная в связи с мягким климатом. Формировка – спиральный кордон АЗОС. Почва содержится в состоянии черного пара. В ранневесенний период проводится боронование. Его совмещают с легким рыхлением верхнего (до 10–12 см) слоя почвы. Весеннее чизелевание, с приспособлениями для межкустовой обработки, проводится в период оптимального увлажнения обрабатываемого слоя почвы, который ориентировочно наступает в 3-й декаде марта — 1-ой декаде апреля. В летний период в зависимости от состояния почвы и засоренности виноградник систематически культивируют с изменением глубины. Еще одним из составляющих факторов агротехники является удобрение виноградников. Так, внесение под плантаж удобрений способствует повышению урожайности и вызреваемости побегов [1, 7, 10].

Защита виноградных насаждений от вредителей и болезней является немаловажным фактором в агротехнике на участке. Из защитных мероприятий в течение лета проводится семь опрыскиваний против болезней и вредителей. Уход за кустом заключался в обрезке, проводимой весной, сухой подвязке, двукратной обломке. В целом агротехфон нормальный, типичный для виноградарской зоны Кубани, обеспечивающей среднюю урожайность 90 ц/га [1, 7, 10].

2.3 Подготовка растительного материала и выделение ДНК

Отбор 3–4 молодых листьев проводили у взрослых плодоносящих растений с верхушки рукава. Выделение ДНК проводилось тремя методами: № 1 модифицированный СТАБ-метод (рисунок 1), № 2 при помощи набора реагентов для выделения ДНК «Сорб-ГМО-А», компании «Синтол», ВНИИСБ (рисунок 2), и № 3 PeqGOLD Plant DNA mini kit компании VWR Company [53, 137, 142, 146, 147, 148, 149].

Экстракцию ДНК проводили СТАБ-методом по следующему протоколу.

100 мг листьев каждого образца растирали в ступках при помощи пестиков, приливали 810 мкл СТАБ буфера и помещали в пробирки. Далее, под вытяжкой в микропробирки досыпали на кончике лезвия скальпиля ПВПП (поливинилплоипиролидина) и капали 8,1 мкл бета-меркаптоэтанола. После чего пробирки помещались на водяную баню, нагретую до 60 °C, и оставляли на 20-30 минут. Каждые 5-10 минут во время инкубации пробы перемешивались. Затем они охлаждались до комнатной температуры и в пробирку приливали 810 мкл смеси хлороформ: изоамиловый спирт. Каждую пробу перемешивали 2-3 минуты на вортексе до гомогенного состояния. Следующим шагом было перемешивание на шейкере в течение 20–30 минут. После интенсивного перемешивания пробирки открывали и оставляли на 15-20 секунд под вытяжкой для удаления газов. Далее центрифугировали 15 минут при 13000-15000 оборотах на центрифуге ELMI. Супернатант (верхняя фаза, примерным объемом в 600 мкл) переливали в новую пробирку, объемом 1,5 мл. Старые пробирки выкидывали, а в новые с супернатантом приливали 50 мкл 3М ацетата натрия, 150 мкл 4М NaCLи 540 мкл холодного изопропанола. Все перемешивали в течение 2 минут и помещали в холодильник при температуре – 20 °C на 30 минут. На этом шаге, при необходимости, можно оставлять пробирки на 10 и более часов при той же температуре. Следующий шаг – центрифугирование в течение 15 минут при 13000 оборотах. Жидкую фазу сливали,

осадок оставляли. Затем промывали с использованием 500 мкл 70 % спирта и центрифугировали 2 минуты при 13000 оборотах, после чего жидкую фазу сливали. Далее высушивали на термостате при 37 °C 10–20 минут до полного удаления спирта. Добавляли 100 мкл 10М ацетата аммония и 1000 мкл холодного этанола. Переворачивали в руках несколько раз и помещали на 5 минут в холодильник при –80 °C. Далее шло центрифугирование 10 минут при 13000 оборотах. Затем удаляли жидкую фазу и промывали с использованием 500 мкл 70 % спирта. Потом удаляли жидкую фазу и оставляли осадок. Предпоследний шаг — сушка термостатом при 37 °C в течение 10–20 минут до полного удаления спирта. В конце осадок разбавляли в ТЕ-буфере или стерилизированной воде и оставляли в термостате на 10–20 минут при 37 °C для лучшего растворения [48, 128, 130, 131, 132, 135, 169].

На картинке можно увидеть присутствие ДНК в виде световых пятен.

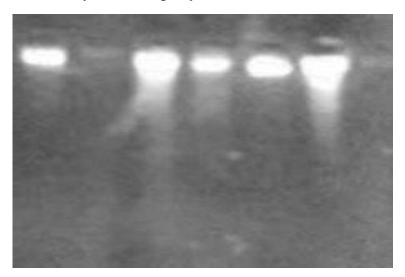


Рисунок 1 – Визуализация ДНК в агарозном геле, выделенной методом № 1

В резюме методу следует сказать, что к нему подходит выражение «медленно, но верно». Занимает пару суток на выделение нуклеиновых кислот из 12 образцов, опасен, но зато выделяет большое количество чистой ДНК.

Следующий метод выделение ДНК – экстракция при помощи «Сорб-ГМО-А», компании «Синтол».

Как и в первом методе, сначала измельчали 100 мг листьев в ступках. После чего перемещали зеленую массу в пробирки и доливали 800 мкл реактива № 2 и 15 мкл реактива № 3. Тщательно перемешивали на вортексе и инкубировали смесь 30 минут на термостате при 60 °C, перемешивая каждые 5-10 минут. Во время инкубации в подставку выставлялись еще два ряда пробирок, которые будут нужны в будущем. В первый ряд наливали 200 мкл реактива № 4 и 40 мкл реактива № 5, предварительно необходимо гомогенизировать на вортексе. После инкубирования пробирки охлаждали до комнатной температуры в течение 1-2 минут и центрифугировали 5 минут при 12000-14000 оборотах. Затем, верхнюю фазу (примерно 300 мкл) переносили в пробирки с подготовленным осаждающим буфером. Далее смесь интенсивно перемешивали до полного ресуспензирования сорбента. Потом пробирки инкубировали при комнатной температуре 10 минут, периодически встряхивая. Центрифугирование проходило при 7000 оборотах 1 минуту. Верхнюю фазу удаляли. К осадку добавляли 300 мкл реактива № 6, интенсивно перемешивали и центрифугировали при 7000 оборотах 1 минуту, верхнюю фазу удаляли. После чего добавляли 500 мкл реактива № 7, снова интенсивно перемешивали и повторяли центрифугирование и удаление супернатанта. Этот шаг потом снова повторяли. После финального удаления супернатанта, осадок высушивали при 60 °C 10–15 минут до полного удаления жидкости. К сухому осадку добавляли 100 мкл реактива № 8, перемешивали на вортексе, инкубировали 5 минут при температуре 60 °C, перемешивая каждые 2 минуты, центрифугировали 2 минуты при 12000-14000 оборотах. Надосадочную жидкость осторожно, чтобы не захватить осадок, переносили в третий ряд пробирок объемом 1,5 мл.

Название химических препаратов, использованных при создании компонентов набора для выделения ДНК, скрыто, поэтому приводятся только условные обозначения, например «реактив $N \ge 2$ ».

Визуализацию наличия ДНК проводили, как и в первом методе, при помощи электрофореза в 2 %-м агарозном геле с бромистым этидием (рисунок 2).

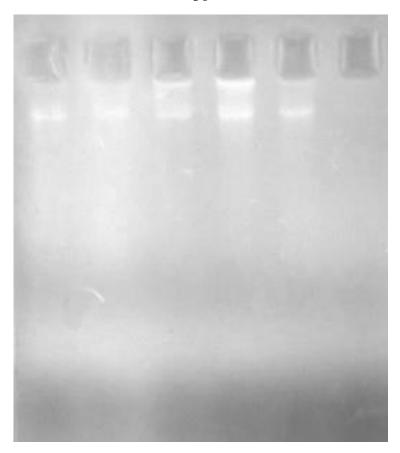


Рисунок 2 – Визуализация ДНК, выделенной методом № 1в агарозном геле

На данном рисунке мы можем видеть присутствие ДНК в виде «чистых» полосок. Этот метод позволяет выделение чистой (без сильных «хвостов») ДНК, в течение более короткого промежутка времени, примерно три часа.

Третий метод выделения ДНК проводился с использованием Plant DNA peqGOLD Plant DNA mini kit компании VWR Company.

Подготовка к выделению: апикальные листья помещались в пробирки объемом 2 мл, туда же клались два металлических шарика. Предварительно готовились 2 сосуда с жидким азотом. Перед измельчением пробирки помещались в первый сосуд с жидким азотом.

Листья растирались в пробирке в присутствии жидкого азота, при помощи лопаточки, которая каждый раз очищалась от остатков листьев бумагой и промывалась изопропанолом, после чего охлаждалась жидким азотом. Далее пробирки помещались в жидкий азот второго сосуда.

После чего из холодильника, в котором постоянно поддерживалась температура –70 °С извлекались адаптеры шейкера. Пробирки с растертыми листьями помещались в адаптеры (по 12 шт. в каждый) и листья дважды размельчались по 30 секунд. Далее пробирки инкубировали на льду. Потом приступали к выделению ДНК.

Протокол выделения. В пробирке объемом 15 мл смешивали 10 мл Lyse buffer PL1 и 375 мкл РНКазы. В каждую пробирку наливали 415 мкл смеси и перемешивали в течение 10 секунд на вортексе, постоянно переворачивая пробирку для того, чтобы прилипшие к стенкам и крышке пробирке листья попали в раствор и перемешались. Затем пробирки 30 минут инкубировали на шейкере при 65 °C 850 грт. Во время инкубации пробирок на шейкере, выставляли 48 белых пробирок из набора. В них вставляли желтые и синие пробирки с фильтрами. Для ускорения процесса также можно выставить 24 шт. обычных пробирок объемом 1,5 мл. Далее в пробирки приливали 100 мкл Lysis buffer PL2, перемешивали на вортексе и помещали на лёд, где выдерживали 15 минут (для получения лучшего результата срок выдержки можно увеличить до 30-40 минут можно даже до 1 часа). После инкубации на льду пробирки центрифугировали 5 минут при скорости 15000 g. Супернатант перенесли с помощью пипетмана в желтые пробирки с фильтрами (по объему супернатант выходит примерно 390-420 мкл). Затем центрифугировали 1 минуту на скорости 10000 g. После этого желтые пробирки выбрасывали, а в белые пробирки под ними приливали 200 мкл Binding buffer, пипетировали для образования смеси, при этом следует стараться работать так, чтобы в наконечнике не образовывались пузырьки, которые могут повредить ДНК. Полученную смесь переносили в синие пробирки с фильтрами. Далее центрифугировали на скорости 10000 g 1 минуту. После чего следует проверить синие пробирки, если в них что-то осталось, надо повторить центрифугирование до полного удаления жидкости. Из белых (нижних) пробирок выливали жидкость, и протирали с помощью лабораторной бумаги, и затем их снова вставляли в синие пробирки

с фильтрами. В синие пробирки с фильтрами наливали 650 мкл Wash buffer и проводили центрифугирование на 10000 g 1 минуту. После центрифугирования из белых пробирок жидкость выливали и повторяли промывание при помощи 650 мкл Wash buffer. Когда из белых пробирок второй раз удалили жидкость, «пустые» пробирки дополнительно центрифугируют 2 минуты при 10000 g. Во время центрифугирования в 4 отдельные пробирки на 1,5 мл наливали 1,5 мкл Elution buffer и ставили их нагреваться при 65 °C. В дальнейшем это увеличит выход ДНК при осаждении с колонок. После центрифугирования синие пробирки с фильтрами вставляли в пробирки объемом 1,5 мл и открывали на просушку длительностью в 5 минут. Далее в синие пробирки с фильтрами приливали 100 мкл Elution buffer и оставляли отстаиваться на 15 минут (для достижения лучшего результата можно увеличить время отстаивания до 40-60 минут). После чего проводили центрифугирование 3 мин на 6000 g. Затем доливали 100 мкл Elution buffer в синие пробирки и снова проводили центрифугирование 3 мин на 6000 g. В итоге, в нижней белой пробирке объемом 1,5 мл мы получили 200 мкл чистой ДНК, растворенной в Elution buffer. В конце определялали концентрацию ДНК при помощи спектрофотометра IMPLEN. В соответствии с показаниями прибора ДНК разбавляли до получения нужной концентрации, наиболее подходящей для прохождения ПЦР-реакции. Обычно это 1 нанограмм на 1 мкл.

Таким образом, данный метод позволяет выделять по 24 образца в день. Количество и качество ДНК подходит для проведения ПЦР-анализа. Следует отметить, что для такого протокола лучше подходят гербарные листья, высушенные с применением силики. Меньшее количество ДНК выделялось при использовании свежих замороженных листьев, сохраненных при температуре –70 °C. Еще меньше ДНК выделилось из поврежденных старением листьев. Выделенная ДНК из них была успешно использована для проведения ПЦР [40, 123].

2.4 Молекулярно-генетические маркеры, использованные в работе по отбору протоклонов винограда

Для изучения сортов и клонов, в работе использовались 6 нейтральных микросателлитных маркеров: VrZag62, VrZag79, VVMD5, VVMD7, VVMD27, VVS2. Они были синтезированы компаниями ЗАО «Синтол» и ЗАО «Бигль» (таблица 4) [87, 88, 92, 94, 109, 110, 111, 115, 117, 118, 119, 120, 121, 122, 124, 127, 154, 163, 164].

 Таблица 4 —
 Нуклеотидная последовательность использованных в работе

 микросателлитных праймеров

Пр	раймер	Нуклеотидная последовательность
VVS2	Forward	CAGCCCGTAAATGTATCCATC
V V S 2	Reverse	AAATTCAAAATTCTAATTCAACTGG
Vr70962	Forward	GGT GAA ATG GGC ACC GAA CAC ACG C
VrZag62	Reverse	CCA TGT CTC TCC TCA GCT TCT CAG C
VrZag79	Forward	AGA TTG TGG AGG AGG GAA CAA ACC G
V1Zag19	Reverse	TGC CCC CAT TTT CAA ACT CCC TTC C
VVMD5	Forward	CTA GAG CTA CGC CAA TCC AA
V VIVIDS	Reverse	TAT ACC AAA AAT CAT ATT CCT AAA
VVMD7	Forward	AGA GTT GCG GAG AAC AGG AT
V VIVID /	Reverse	CGA ACC TTC ACA CGC TTG AT
VVMD27	Forward	GTA CCA GAT CTG AAT ACA TCC GTA AGT
V V IVID21	Reverse	ACG GGT ATA GAG CAA ACG GTG T

Таблица 4 демонстрирует последовательности нуклеотидов праймеров, использованных при идентификации сортов и клонов винограда. Данны приаймерные пары являются рекомендованными Международной организацией OIV (l'Organisation internationale de la vigne et du vin) для составления ДНК-паспортов исследуемых генотипов.

2.5 Проведение полимеразной цепной реакции, электрофореза, визуализации продуктов амплификации и анализ фотографий электрофореграмм

Оценка близости генетического родства при применении микросателлитных маркеров требует определения точной разницы в размерах амплифицированного участка ДНК у исследуемых сортов. В связи с этим, в качестве референсных сортов использовались Рислинг, Мерло, Пино блан, Каберне фран, Каберне-Совиньон. При этом необходим индивидуальный подход к установке температуры отжига праймерной пары. Поэтому для каждой праймерной пары были использованы оптимальные условия полимеразной цепной реакции, обеспечивающие высокий выход амплифицированного продукта:

- 5 минут при 94 °C начальная денатурация, затем следующие 30 циклов:
- 30 секунд денатурация при 94°C,
- 30 секунд отжиг праймеров при N1°C,
- -30 секунд синтез при 72 °C;
- последний цикл синтеза 3 минуты при 72 °C.

В состав ПЦР-смеси входили: 10–40 нг ДНК, 0,05мМ dNTP (дезоксири-бонуклеотидтрифосфат), 0,2 мМ каждого праймера, 1–2 единицы Таq-полимеразы, 25 мМ КСІ, 60 мМ Tris-HCI, pH = 8,5, 1,5 мМ MgCL2, в общем объеме реакционной смеси 25 мкл. Амплификация была проведена в амплификаторах Терцик производства НПО «ДНК-технологии», Россия и ДТ-322 «ДНК Технология».

Для электрофоретического разделения продуктов ПЦР использовали 8 % акриламидный гель на основе 1×Трис-боратного буфера (0,09 М Трис, 0,09 М Борной кислоты, 2 мМ ЭДТА, рН=8,2). Полимеризацию геля проводили при комнатной температуре в течение 45 минут. В качестве катализаторов полимеризации использовали ТЕМЕД и аммония персульфат, из расчёта 40 мкл

 $¹N=:50~^\circ\text{C}$ для маркеров VrZag62 и VrZag79; 52 $^\circ\text{C}$ для маркера VVS2; 55 $^\circ\text{C}$ для маркеров VVMD5 и VVMD7; 56 $^\circ\text{C}$ для маркера VVMD27.

ТЕМЕДа (100 % раствор) и 350 мкл 10 % аммония персульфата на 50 мл раствора геля.

После окончания полимеризации лунки геля промывали электродным буфером (1×Трис-боратный буфер) и проводили предварительный электрофорез без внесенных образцов, для удаления из геля остатков катализаторов и незаполимеризовавшегося акриламида, при напряжении 150 V, в течение 1 часа. После чего вносили в лунки геля по 10 мкл продуктов амплификации в неденатурирующем буфере нанесения (40 % сахароза, 0,025 % бромфеноловый синий, 0,025 % ксилен цианол), при этом соблюдали соотношение: продукты ПЦР/буфер нанесения = 5/1.

Электрофорез продуктов амплификации ДНК с использованием микросателлитных маркеров проводили в 6 % полиакриламидном геле при напряжении 250 V в течение 3—4 часов. В работе был использован аппарат вертикального электрофореза VE-3 фирмы Хеликон. После электрофореза гелевые пластины помещали на 15 минут в раствор бромистого этидия 5 мкг/мл и фотографировали в ультрафиолете.

Размер аллелей микросателлитных локусов определяли с использованием программы Gel-Pro Analyzer 3.1. Как указывалось ранее, при подсчете ошибки количества нуклеотидов в полиакриламидном геле использовались референсные сорта. Для отбраковки «неэффективных» аллелей использовали список существующих аллелей, зарегистрированных в международной базе данных «Еu-vitis» и любезно предоставленных доктором Эрикой Мауль. Также принималось во внимание то, что при изменении количества нуклеотидов в одной аллели, должно изменяться их количество, и в другой из-за сохранения нуклеотидного расстояния между ними, при этом также учитывался список существующих аллелей. В конце при сравнении клонов друг с другом, а также с референсными сортами с известным заранее количеством пар нуклеотидов принималось во внимание то, что ошибка геля составляет 5 п. н. (здесь и далее п. н. – это пар нуклеотидов). Поэтому все, что меньше этого показателя принималось как несущественное различие. Далее, чтобы также уменьшить коли-

чество неэффективных аллелей, при всём вышесказанном, так как менее 5 п. н. несущественно, в таблицу вносились следующие изменения: вставлялась аллель референсного сорта, так как считалось, что они не отличаются. Таким образом, существенно снизилось количество неэффективных аллелей, более того, как видно далее из построения дендрограммы (рисунок 10), показана эффективность данного метода, так как отсутствует перемешивание сортов при кластеризации сортогрупп. При отсутствии данных об аллели, чтобы не вносить путаницу в программу, так как она крайне чувствительна, при наличии референсного сорта, например Алиготе, считалось, что аллель есть и она такая же как и у исходного материала.

2.6 Использование мультиплексов в изучении аборигенных сортов винограда, сохраненных в Анапской зональной опытной станции СКЗНИИСВиВ

Для более удобного и быстрого изучения аборигенных сортов и дикорастущего винограда были использованы мультиплексы.

При использовании мультиплексов (таблица 5) были подобраны следующие праймерные пары так, чтобы не было перекрытия или наложения пиков при секвенировании. Некоторые праймеры близки по количеству амплифицируемых пар, но легко различимы по цвету.

Для ДНК-анализа применялись следующие праймерные пары и были подобраны приведенные ниже смеси праймеров для наиболее простой их идентификации.

В мультиплексе № 6 можно заметить, что пики, полученные от амплификации праймеров, могут накладываться, но проблем с ними никогда не возникало, и программа GeneMapper 4.0 их всегда хорошо дифференцировала по цвету.

Параметры ПЦР-реакции. Для наиболее эффективного амплифицирования были выбраны следующие параметры ПЦР-реакции для Peqlab-Kit:

- 1. 3 минуты при 95 °C начальная денатурация, далее следующие 30 циклов:
- 2. 15 секунд денатурация при 95 °C;
- 3. 30 секунд отжиг праймеров при 60 °С;
- 4. 30 секунд синтез при 72 °С;
- 5. Последний цикл синтеза 7 минут при 72 °C.

ПЦР смесь включала:

 $2 \times$ PCR-Master-Mix Yc 1.25 ед. Taq-DNA-Polymerase 25 мкл, 0.4 mM dNTP (дезоксирибонуклеотидтрифосфат), 40 мМ Tris-HCl (pH 8.55 при 25°C), 32 мМ (NH4)2SO4, и 4 мМ MgCl2.

4

Таблица 5 — Набор праймеров и мультиплексы, использованные при описании аборигенных сортов и дикорастущего винограда

Цвет при отображении в GeneMapper	Название праймера		Нуклеотидная последовательность праймера	Предполагаемая длина амплифицируемого фрагмента
1	2		3	4
			Мультиплекс 1	
Злёный	VrZag79	Forward primer:	AGATTGTGGAGGAGGAACAAACCG	210-230
	V120677	Reverse primer:	TGCCCCCATTTTCAAACTCCCTTCC	210 230
Синий	VrZag62	Forward primer:	GGTGAAATGGGCACCGAACACACGC	170-230
Синии	VIZag02	Reverse primer:	CCATGTCTCTCCTCAGCTTCTCAGC	170-230
NC::	VVS2	Forward primer:	CAGCCCGTAAATGTATCCATC	110-170
Жёлтый	VVS2	Reverse primer:	AAATTCAAAATTCTAATTCAACTGG	110-170
G V	VIV. 11.07	Forward primer:	TATAACTTCTCATAGGGTTTCC	210,410
Синий	VVIV67	Reverse primer:	TTGGAGTCCATCAAATTCATCT	310-410
		<u>-</u>	Мультиплекс 2	1
	WWW.	Forward primer:	ACCTCTATAAGATCCTAACCTG	126.160
Синий	VVIN16	Reverse primer:	AAGGGAGTGTGACTGATATTTC	136-160
		Forward primer:	CTTTGAAAATTCCTTCCGGGTT	1.10.200
Красный	VMC1B11	Reverse primer:	TATTCAAAGCCACCCGTTCTCT	160-200
		Forward primer:	GGGGAATAACTAAATTGAGGAT	
Зеленый	VVIP60	Reverse primer:	GTATGAATGCGGATAGTTTGTG	270-350
		Forward primer:	TTCCGTTAAAGCAAAAGAAAAAGG	
Синий	VVMD25	Reverse primer:	TTGGATTTGAAATTTATTGAGGGG	210-260
		Forward primer:	TACTTCACCTAACAATACAGCT	
Жёлтый	VVIN73	Reverse primer:	AATACATAAGGTGAAGATGCCT	256-276
		1	Мультиплекс 3	
	N.G. C	Forward primer:	ACCTGGCCCGACTCCTCTTGTATGC	110 170
Синий	VrZag67	Reverse primer:	TCCTGCCGGCGATAACCAAGCTATG	110-170
- V	, , , , , , , , , , , , , , , , , , ,	Forward primer:	CTAGAGCTACGCCAATCCAA	200.250
Синий	VVMD5	Reverse primer:	TATACCAAAAATCATATTCCTAAA	200-270
		Forward primer:	TGACCCTCGACCTTAAAATCTT	
Зелёный	VVIB01	Reverse primer:	270-350	

Окончание таблицы 5

1	2		3	4
)](" <u>×</u>	VVIII 5 4	Forward primer:	CCGCACTTGTGTTGAATTTCAG	150 210
Жёлтый	VVIH54	Reverse primer:	CAAACCGTTTTTACACCAGCAG	150-210
	·		Мультиплекс 4	
		Forward primer:	TATGATTTTTAGGGGGGTGAGG	
Красный	VVMD32	Reverse primer:	GGAAAGATGGGATGACTCGC	230-280
		Forward primer:	GGCGGAGGCGTAGATGAGAGGGCG	
Жёлтый	VrZag83	Reverse primer:	ACGCAACGGCTAGTAAATACAACGG	175-205
		Forward primer:	GTACCAGATCTGAATACATCCGTAAGT	
Синий	VVMD27	Reverse primer:	ACGGGTATAGAGCAAACGGTGT	160-200
		Forward primer:	TAAAAGGATGGTAGATGACAGA	
Синий	VVIQ52	Reverse primer:	ACAGGAAAGTGTTCAATGGTTA	60-90
	·	-	Мультиплекс 5	-
		Forward primer:	TTTTCTCCCTACTCTTAACTTC	
Красный	VVIV37	Reverse primer:	GGTAGACCTTGAAATGAAGTAA	130-190
		Forward primer:	TATCCAAGAGACAAATTCCCAC	
Синий	VVIP31	Reverse primer:	TTCTCTTGTTTCCTGCAAATGG	160-200
		Forward primer:	AGAGTTGCGGAGAACAGGAT	
Велёный	VVMD7	Reverse primer:	CGAACCTTCACACGCTTGAT	210-270
I ~	VIVIMD24	Forward primer:	GTGGATGATGGAGTAGTCACGC	100.220
Жёлтый	VVMD24	Reverse primer:	GATTTTAGGTTCATGTTGGTGAAGG	190-230
			Мультиплекс 6	
Tc •	VIVI (DO1	Forward primer:	GGTTGTCTATGGAGTTGATGTTGC	220.267
Кёлтый	VVMD21	Reverse primer:	GCTTCAGTAAAAAGGGATTGCG	230-267
	1111 (520)	Forward primer:	AACAATTCAATGAAAAGAGAGAGAGAGA	240.246
Велёный	VVMD28	Reverse primer:	TCATCAATTTCGTATCTCTATTTGCTG	218-268

Амплификация проводилась в GenAmp PCR System 9700.

Определение размеров фрагментов ДНК ианализ ПЦР смесей проводили на секвенаторе ABI PRISM 3130 xl sequencer (Applied Biosystems), используя LIZ в качестве маркера молекулярного веса. Размер фрагментов определялся при помощи программы GeneMapper 4.0.

В качестве референсных сортов использовались Каберне фран и Мускат белый.

2.7 Статистическая обработка данных

Анализ частот встречаемости аллелей для обоих выборок генотипов проводили в программе-макросе GenAlEx 6.3 для Excel. Из всех возможных методов кластеризации нами был использован метод «Одиночной связи» (от англ. single linkage), известный также как метод «ближайшего соседа», выполненный в программе DARwin 6 (дендрограмма представлена в подразделах 3.1.3 и 3.1.6), специально созданной для анализа молекулярно-генетических данных по микросателлитным аллелям. После кластеризации, для упрощения процесса, полученная картинка интерпретировалась визуально.

Раздел 3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

3.1 Анализ генетического разнообразия сортов и клонов винограда с использованием микросателлитных маркеров

Применение микросателлитных маркеров даёт возможность оценивать генетические изменения в популяцях исследуемых сортов и клонов винограда. Их идентификация выполнялась на основании данных об аллельном состоянии использованных в работе молекулярных маркеров у каждого отдельно взятого генотипа.

Нами проведены исследования, методами освещенными в разделе 2 и результаты отражены в таблицах 6–11 для клонов, таблице 14 (раздел 3) и приложении Ю (таблицы Ю1–Ю25) для аборигенных сортов и дикорастущего винограда. Все фотографии обрабатывались в программе GelPro, полученные данные записывались в таблицы «Excel». Далее в таблицах 6–11 представлены аллельные состояния для сортов и клонов, а их различия отмечены жирным шрифтом. К каждой таблице идёт пояснение, в котором для каждого сорта отдельно проанализированы отличия, если таковые были обнаружены. После все клоны кластеризованы в программе DARWin 6.

Пояснение к таблице 6. Согласно полученным данным, клоны сорта Академический отличаются по локусу VVMD7 на 6 нуклеотидов. Клоны сорта Алиготе отличаются по локусам VrZag62 на 8 нуклеотидов, VVMD5 на 21 и VVMD7 на 19. Клон Антоний великикий 30-5 отличается от остальных клонов на 6 нуклеотидов по локусу VVMD7. Среди клонов сорта Анюта по локусу VrZag62 Анюта Ф отличается на 6 нуклеотидов, по локусу VrZag79 Анюта 5-7 на 8 и по локусу VVS2 Анюта 19 куст — на 9. В группе клонов Аркадия розовая, клон с номером 1 кл 2 ряд отличается по локусу VrZag79 на 12 нуклеотидов и по локусу VVMD27 — на 6. Среди клонов сорта Богатяновский отличия найдены у клона Богатяновский 2 кл 2 ряд по локусам VVMD5 и VVMD7 на 16 и 15 нуклеотидов, соответственно.

24

Таблица 6 – Аллельное состояние генов среди сортов и клонов

Название	VrZag62	VrZag62	VrZag79	VrZag79	VVMD5	VVMD5	VVMD7	VVMD7	VVMD27	VVMD27	VVS2	VVS2
342 3 кл 6 ряд	190*	190	260	260	238	238	233	233	Н/Д**	Н/Д	141	141
Академик	200	200	224	224	214	234	283	283	186	186	133	133
Академический К	200	200	224	224	214	234	277	277	186	186	133	133
Алиготе 7-10	186	188	243	245	230	242	239	239	180	190	133	137
Алиготе 7РЯД-7К	194	196	243	245	230	263	239	258	180	190	133	137
Антоний Великий	196	196	240	240	214	221	243	251	188	188	139	139
Антоний Великий 30-5	196	196	240	240	214	221	243	257	188	188	133	143
Антоний Великий 30-6	196	196	240	240	214	221	243	251	188	188	133	143
Антоний Великий Ф	196	196	240	240	214	221	243	251	188	188	133	143
Анюта	188	188	242	242	221	248	231	231	184	184	139	139
Анюта 19 куст	188	188	242	242	228	228	231	231	184	184	148	148
Анюта 3 кл 5 ряд	188	188	242	242	221	248	231	231	184	184	139	139
Анюта 5 куст	188	188	242	242	228	228	231	231	188	199	139	139
Анюта 5-5	188	188	242	242	221	248	231	231	184	184	139	139
Анюта 5-7	188	188	250	250	221	248	231	231	184	184	139	139
Анюта Ф	194	194	242	242	221	248	231	231	184	184	139	139
Аркадия розовая 1 кл 2 ряд	190	190	234	234	229	229	233	233	182	182	152	152
Аркадия розовая 10 куст	190	190	242	242	229	229	233	233	188	188	152	152
Аркадия розовая 2-5	190	190	242	242	229	229	233	233	188	188	133	147
Аркадия розовая 2-6	190	190	242	242	229	229	233	233	188	188	133	147
Аркадия розовая 4 куст	190	190	242	242	229	229	233	233	188	188	133	147
Богатяновский 2 кл 2 ряд	Н/Д	Н/Д	234	234	242	242	233	233	184	184	142	142
Богатянский 6 куст	Н/Д	Н/Д	234	234	226	226	218	218	184	184	142	142
Богатянский 9 куст	Н/Д	Н/Д	234	234	226	226	218	218	184	184	142	142

Примечание: * Здесь и далее во всех таблицах, число пар нуклеотидов; ** Н/Д – нет данных об аллели.

Пояснение к таблице 7. Как мы можем видеть из таблицы 7, клоны Вердо черный не отличаются друг от друга. Среди клонов сорта Виктор найдены отличия у Виктор 3 кл 29 ряд в локусе VVMD5 на 10 нуклеотидов и в локусе VVMD7 на 23 нуклеотида у клона Виктор 7 куст. Среди клонов сорта Гелиос найдены отличия у клонов Гелиос 50-5 и Гелиос 50-6 в локусе VVMD5 на 26 и 10 нуклеотидов, соответственно. Среди клонов сорта Долгожданный найдены отличия у клона Долгожданный в локусах VrZag62 на 10 нуклеотидов, у клона Долгожданный 3 кл 6 ряд в локусе VrZag79 на 22 нуклеотида и 21 в локусе VVMD5. Клоны сорта Йоханнитер не отличаются друг от друга по молекулярно-генетическим профилям. Среди клонов сорта Каберне карбон найдены отличия в локусе VrZag79 на 8 нуклеотидов. Среди клонов сорта Каберне Кортис найдены отличия в локусе VVMD5 на 12 нуклеотидов.

Пояснение к таблице 8. Среди клонов сорта Каберне-Совиньон были найдены отличия у клонов Каберне-Совиньон 5а в локусе VrZag62 на12 нуклеотидов, у клонов Каберне-Совиньон 210-4 и Каберне-Совиньон 5а в локусе VVMD27 на 10 нуклеотидов. В локусе VVS2 на 6 нуклеотидов у клонов Каберне-Совиньон 210-8, Каберне-Совиньон 217 и Каберне-Совиньон 5а. У клонов сорта Ливия были найдены отличия у клонов Ливия 3 кл 14 ряд в локусе VVMD5 на 14 нуклеотидов и клона Ливия Ф и Ливия-Ф в локусе VVS2 на 7 нуклеотидов. Среди клонов сорта Мерло были найдены отличия у клонов Мерло 14 грам. в локусе VrZag62 на 6 нуклеотидов и клона Мерло 10-9 в локусе VrZag79 на 12 нуклеотидов. У клонов сорта Монарх обнаружены отличия в локусе VVMD7 на 8 нуклеотидов у клона Монарх 1 куст и у клона Монарх 3 кл 2 ряд в локусе VVMD27 на 10 нуклеотидов. Клоны сорта Низина не отличимы друг от друга. У клонов сорта первозванный найдено отличие у клона Первозванный 3 кл 10 ряд в локусе VVS2 на 11 нуклеотидов.

Таблица 7 – Аллельный полиморфизм среди сортов и клонов

Название	VrZag62	VrZag62	VrZag79	VrZag79	VVMD5	VVMD5	VVMD7	VVMD7	VVMD27	VVMD27	VVS2	VVS2
Вердо черный 7-2	192	192	242	244	246	246	237	255	184	196	143	157
Вердо черный 7-6	192	192	242	244	246	246	237	255	184	196	143	157
Виктор 3 кл 29 ряд	188	188	246	246	238	238	235	235	Н/Д	Н/Д	138	138
Виктор 5 куст	188	188	246	246	228	228	235	235	Н/Д	Н/Д	138	138
Виктор 7 куст	188	188	246	246	228	228	212	212	Н/Д	Н/Д	138	138
Гелиос 16 куст	188	188	240	240	224	224	231	231	184	184	137	137
Гелиос 3 кл 50 ряд	188	188	240	240	250	250	231	231	184	184	137	137
Гелиос 50-5	188	188	240	240	234	234	231	231	184	192	137	137
Гелиос 50-6	188	188	240	240	224	224	231	231	184	184	137	137
Гелиос 9 куст	188	188	240	240	224	224	231	231	184	184	137	137
Гурман ранний 3 кл 31 ряд	186	186	242	242	244	244	231	231	Н/Д	Н/Д	141	141
Долгожданный	200	200	238	238	217	221	233	233	186	186	141	141
Долгожданный 3 кл 6 ряд	190	190	260	260	242	242	233	233	186	186	141	141
Долгожданный 6-8	190	190	238	238	217	221	233	233	186	186	141	141
Долгожданный 6-9	190	190	238	238	217	221	233	233	186	186	141	141
Долгожданный Ф	190	190	238	238	217	221	233	233	186	186	141	141
Йоханнитер 79-4	190	190	242	242	229	229	243	243	Н/Д	Н/Д	147	149
Йоханнитер 80-6	190	190	242	242	229	229	243	243	Н/Д	Н/Д	147	149
Йоханнитер 10-11	190	190	242	242	229	229	243	243	Н/Д	Н/Д	147	149
Йоханнитер 11-11	190	190	242	242	229	229	243	243	Н/Д	Н/Д	147	149
Каберне карбон 525-4	186	186	254	256	242	242	245	245	Н/Д	Н/Д	141	141
Каберне карбон 525-6	186	186	246	248	242	242	245	245	Н/Д	Н/Д	141	141
Каберне Кортис 271-2	194	198	Н/Д	Н/Д	238	238	239	258	196	196	139	139
Каберне Кортис 271-7	194	198	Н/Д	Н/Д	250	250	239	258	196	196	139	139

Таблица 8 – Полиморфизм генов среди сортов и клонов

Название	VrZag62	VrZag62	VrZag79	VrZag79	VVMD5	VVMD5	VVMD7	VVMD7	VVMD27	VVMD27	VVS2	VVS2
Каберне-Совиньон 210-4	188	194	248	248	262	262	239	239	186	196	137	149
Каберне-Совиньон 210-8	188	194	262	262	262	262	239	239	172	186	137	155
Каберне-Совиньон 15 Каб Мысхако	188	194	248	248	229	238	239	239	172	186	137	149
Каберне-Совиньон 217	188	194	262	262	229	238	239	239	172	186	137	155
Каберне-Совиньон 5а	194	206	262	262	229	262	239	239	186	196	137	155
Ливия	190	190	240	240	221	221	251	251	186	194	135	135
Ливия 14-5	190	190	240	240	221	221	251	251	186	194	135	135
Ливия 14-6	190	190	240	240	221	221	251	251	186	194	135	135
Ливия 3 кл 14 ряд	190	190	240	240	235	235	251	251	186	194	135	135
Ливия Ф	190	190	240	240	221	221	251	251	186	194	128	128
Ливия-Ф	190	190	240	240	221	221	251	251	186	194	128	128
Мерло 10-8	194	194	260	260	223	234	243	243	186	188	137	149
Мерло 10-9	194	194	246	248	223	234	241	259	186	188	137	149
Мерло 14 грам.	194	200	260	260	223	234	239	247	186	188	137	149
Мерло 348	194	194	260	260	223	242	235	235	186	188	137	149
Монарх 1 куст	Н/Д	Н/Д	Н/Д	Н/Д	230	230	242	242	188	188	150	150
Монарх 13 куст	Н/Д	Н/Д	Н/Д	Н/Д	230	230	234	234	188	188	150	150
Монарх 3 кл 2 ряд	Н/Д	Н/Д	Н/Д	Н/Д	230	230	234	234	178	178	150	150
Низина 3 кл 2 ряд 1	184	184	238	238	265	265	233	233	182	182	Н/Д	Н/Д
Низина 3 кл 2 ряд 2	184	184	238	238	265	265	233	233	182	182	Н/Д	Н/Д
Первозванный 3 кл 10 ряд	184	184	238	238	244	244	214	214	190	190	133	133
Первозванный 4 куст	184	184	238	238	244	244	214	214	190	190	144	144
Первозванный 6 куст	184	184	238	238	244	244	214	214	190	190	144	144

Таблица 9 – Полиморфизм аллелей сортов и клонов

Название	VrZag62	VrZag62	VrZag79	VrZag79	VVMD5	VVMD5	VVMD7	VVMD7	VVMD27	VVMD27	VVS2	VVS2
Пино белый 31	189	195	258	258	228	253	239	243	185	189	147	151
Пино белый 32	189	195	239	239	228	238	239	243	185	189	147	151
Пино белый 6	195	204	258	258	228	238	239	243	185	189	147	151
Пино гри 46 куст 1	188	194	234	234	250	250	239	243	182	186	135	149
Пино гри 46 куст 2	188	194	240	246	250	250	239	243	182	186	135	149
Пино гри 46 куст 3	188	194	240	246	250	250	239	243	182	186	135	135
Пино серый 46	188	194	258	258	225	236	239	243	182	186	135	155
Пино черный 50-11	188	194	239	245	230	240	239	243	196	196	137	151
Пино черный 50-8	188	194	239	245	230	240	239	243	186	190	137	151
Пинофагр	196	204	258	260	230	240	239	243	186	190	137	151
Преображение 15 куст	186	186	240	240	226	226	226	226	190	190	142	142
Преображение 3 кл 2 ряд	186	186	240	240	244	244	214	214	190	190	142	142
Преображение 5 куст	186	186	240	240	226	226	214	214	190	190	142	142

Таблица 10 – Полиморфизм генетических маркеров среди сортов и клонов

, 11												
Название	VrZag62	VrZag62	VrZag79	VrZag79	VVMD5	VVMD5	VVMD7	VVMD7	VVMD27	VVMD27	VVS2	VVS2
Рислинг 130	194	204	243	245	228	236	249	257	182	190	143	151
Рислинг 143143111	194	204	243	245	228	236	249	257	182	190	147	157
Рислинг 245-5	194	204	243	245	228	236	249	257	182	196	143	151
Рислинг 245-7	194	204	243	245	228	236	249	257	182	190	143	151
Рислинг 31411111	188	204	243	245	228	236	229	249	182	190	143	151
Рислинг 3142092	194	204	243	245	228	236	249	257	196	196	143	151
Рислинг 3144111	194	204	243	245	228	236	249	257	182	190	143	151
Рислинг 3144111 1	194	204	243	245	228	236	249	257	182	190	143	151
Рислинг 314991	194	204	243	245	228	236	231	249	182	190	143	151
Рислинг 3991	194	204	243	245	228	236	249	257	182	190	143	151
Рислинг 492	184	194	243	245	228	265	252	252	182	190	143	151
Рислинг 7111891	194	204	243	245	228	236	249	257	182	190	143	151
Рислинг 7121431	194	204	243	245	228	236	249	257	182	190	143	151
Рислинг 7-12-201 15-1 1-24-15	194	204	243	245	265	265	226	226	182	190	143	151
Рислинг 7151077п	194	204	243	245	228	236	249	257	182	190	143	151
Рислинг 830	194	204	243	245	228	236	249	257	182	190	143	151
Рислинг 964	194	204	243	245	228	236	249	257	182	190	143	151
Рислинг 991	194	204	243	245	228	253	229	247	182	190	143	151
Рислинг Алькадар 34	194	194	243	245	228	236	249	257	182	190	143	151
Рислинг Алькадар 34а	194	194	243	245	228	236	249	257	182	190	143	151
Рислинг Алькадар 34б	194	196	243	245	228	236	241	257	182	190	143	151
Рислинг Алькадар 34г	194	204	243	245	228	236	231	231	182	190	143	157
Рислинг клон	194	204	243	245	228	236	249	257	182	190	143	151

Пояснение к таблице 9. Согласно данным таблицы 9, среди клонов сорта Пино белый отличия найдены у Пино белый 6 в локусе VrZag62 на 9 нуклеотидов и у Пино белый 31 в локусе VVMD5 на 15 нуклеотидов. Среди клонов сорта Пино серый и Пино черный найдены отличия у Пинофагр в локусе VrZag62 на 10 нуклеотидов, у Пино гри куст 1, Пино серый 46 и Пинофагр в локусе VrZag79 на 6, и 18 нуклеотидов. В локусе VVMD27 у клона Пино черный 50-11 на 6 нуклеотидов и у клона Пино серый 46 в локусе VVS2 на 6 нуклеотидов. Среди клонов сорта Преображение найдены отличия у клона Преображение 3 кл 2 ряд на 18 нуклеотидов в локусе VVMD5 и на 8 нуклеотидов в локусе VVMD7.

Пояснение к таблице 10. Из приведенной таблицы следует, что среди клонов сорта Рислинг по локусу VrZag62 были найдены отличия в 6 и 10 нуклеотидов у клонов Рислинг 31411111 и Рислинг 492, по локусу VVMD5 отличия найдены у клонов Рислинг 492, Рислинг 7-12-201 15-1 1-24-15 и Рислинг 991 на 29, 29 и 17 нуклеотидов, по локусу VVMD7 отличия найдены у клонов Рислинг 31411111, Рислинг 314991, Рислинг 492, Рислинг 7-12-201 15-1 1-24-15 и Рислинг 991, на 20, 18, 5, 23 и 10 нуклеотидов, по локусу VVMD27 отличия найдены у клонов Рислинг 245-5 и Рислинг 3142092 на 6 и 6 нуклеотидов соответственно. Среди клонов сорта Рислинг Алькадар отличия найдены у клонов Рислинг Алькадар 346 по локусу VVMD7 на 8 нуклеотидов и у клона Рислинг Алькадар 34г по локусам VVMD7 и VVS2 на 18 и 6 нуклеотидов, соответственно.

Пояснение к таблице 11. Среди клонов сорта Совиньон белый найдены отличия в локусе VVMD7 на 6 нуклеотидов. Среди клонов сорта Солярис были найдены отличия у клонов Солярис 70-16 в локусе VrZag62 на 8 нуклеотидов и Солярис 70-21 в локусе VVMD7 на 6 нуклеотидов. Клоны сорта Супер Экстра были неотличимыми по молекулярно-генетическим профилям.

Таблица 11 – Аллельное разнообразие генов, обнаруженное среди сортов и клонов

Название	VrZag62	VrZag62	VrZag79	VrZag79	VVMD5	VVMD5	VVMD7	VVMD7	VVMD27	VVMD27	VVS2	VVS2
Рошфор-Ф	176	176	256	258	248	248	247	247	192	192	126	137
Совиньон белый 23-11	188	194	245	247	230	265	245	263	176	190	133	151
Совиньон белый 23-8	188	194	245	247	230	265	239	257	176	190	133	151
Солярис 10-11	188	188	248	248	219	219	245	249	200	200	126	131
Солярис 11-11	188	188	248	248	219	219	245	249	200	200	126	131
Солярис 70-16	180	180	248	248	219	219	245	249	200	200	126	131
Солярис 70-21	188	188	248	248	219	219	239	258	200	200	126	131
Супер Э Ф	Н/Д	Н/Д	236	236	224	224	220	220	186	186	142	142
Супер Экстра 21 куст	Н/Д	Н/Д	236	236	224	224	220	220	186	186	142	142
Супер Экстра 3 кл 1 ряд	Н/Д	Н/Д	236	236	224	224	220	220	186	186	142	142
Супер Экстра 9 куст	Н/Д	Н/Д	236	236	224	224	220	220	186	186	142	142
Юбилей Новочеркасска 3 кл 7 ряд	Н/Д	Н/Д	240	240	265	265	233	233	180	180	133	133

Таблица 12 – Полиморфизм микросателлитных маркеров, использованных в работе

Маркер	Количество выявленных аллелей	Но	Не
VrZag62	15	0.417	0.847
VrZag79	19	0.333	0.901
VVMD5	25	0.462	0.934
VVMD7	27	0.412	0.923
VVMD27	16	0.500	0.867
VVS2	20	0.530	0.923

Примечания:

Из приведенной выше таблицы 12 видно, что микросателлитные маркеры показали различный уровень полиморфизма: от 15 до 27 аллелей на локус.

Наименьший уровень полиморфизма показали маркеры VrZag62 и VVMD27 с колличеством аллелей 15 и 16 соответственно.

Средний уровень продемонстрировал маркер VVS2 с колличеством 20 аллелей.

Высокий уровень полиморфизма показали микросателлитные локусы VVMD5 и VVMD7 с 25 и 27 аллелями, соответственно.

Ожидаемая гетерозиготность варьировала в пределах от 0,847 (VrZag62) до 0,934 (VVMD5).

Наблюдаемая гетерозиготность изменялась в диапазоне от 0,333 (VrZag79) до 0,530 (VVS2). Внутри группы фактическая гетерозиготность не превышает ожидаемую, что свидетельствует о низком уровне полиморфизма, который является вполне нормальным при изучении клонов винограда.

На основании данных об аллелях у исследованных сортов для понимания состава изученного генетического пула, была проведена оценка частот встречаемости аллелей среди всех сортов при помощи программы-макроса GenAlEx 6.3. Для проведения кластеризации нами был использован метод «Одиночной связи», известный также как метод ближайшего соседа в программе DARWin 6 [95, 96]. Для анализа частот встречаемости аллелей были построены два типа графиков: для каждой аллели в отдельности круговая диаграмма и общая гистограмма для всех аллелей [83, 138].

^{1.} Но – наблюдаемая гетерозиготность

^{2.} Не – ожидаемая гетерозиготность

3.1.1 Анализ частот встречаемости аллелей в популяции клонов

Далее представлены результаты анализа частот встречаемости аллелей, амплифицированных при помощи праймеров VrZag62 и VrZag79 (рисунок 3–4).

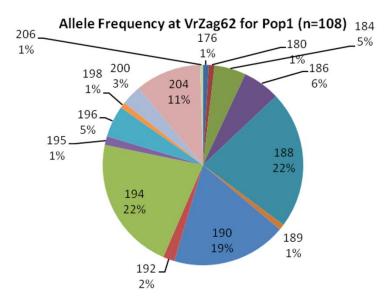


Рисунок 3 – Анализ частот встречаемости в популяции аллелей для локуса VrZag622

При анализе локуса VrZag62 было обнаружено всего 15 аллелей, из которых наиболее часто встречаются 190, 188 и 194 п.н., соответственно 19 %, 22 % и 22 %.

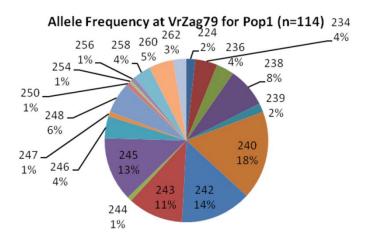


Рисунок 4 – Анализ частот встречаемости в популяции аллелей для локуса VrZag79

²Здесь и далее на картинках указаны найденные в процессе работы аллели (цифры указывают количество пар нуклеотидов), под ними в процентах указана частота их встречаемости среди всех исследованных сортов.

Для локуса VrZag79 обнаружено 19 состояний аллелей, из них наиболее распространены с длиной 243, 245, 242 и 240 п.н., имеющие частоту встречаемости 11 %, 13 %,14 % и 18 %.

Далее представлены результаты анализа частот встречаемости аллелей, амплифицированных при помощи праймера VVS2 (рисунок 5).

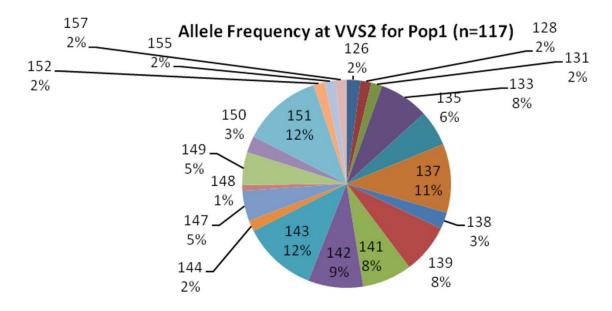


Рисунок 5 – Анализ частот встречаемости в популяции аллелей для локуса VVS2

Данная диаграмма демонстрирует распространение аллелей VVS2. Всего обнаружено 20 состояний для локуса. Наиболее распространены 137, 143 и 151 п.н., соответственно 11 %, 12 % и 12 %.

Далее представлены результаты анализа частот встречаемости аллелей, амплифицированных при помощи праймеров локусов VVMD5, VVMD7 и VVMD27 (рисунок 6–8).

Allele Frequency at VVMD5 for Pop1 (n=119)

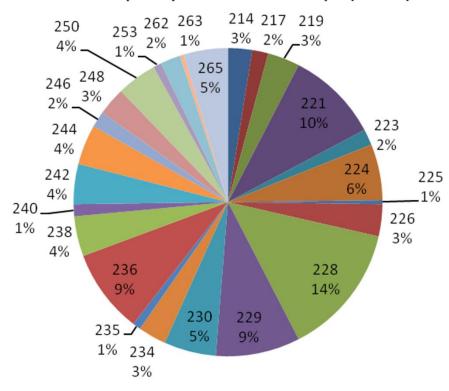


Рисунок 6 – Анализ частот встречаемости в популяции аллелей для локуса VVMD5

Данная диаграмма демонстрирует частоту встречаемости аллелей локуса VVMD5. Всего выявлено 25 состояний. Здесь наиболее распространены аллели с длиной 236, 221 и 228 п.н., имеющие частоты встречаемости 9 %, 10 % и 14 %, соответственно.

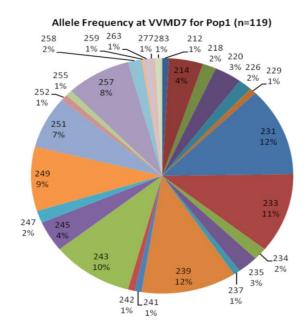


Рисунок 7 – Анализ частот встречаемости в популяции аллелей для локуса VVMD7

Анализ частот встречаемости аллелей для локуса VVMD7 выявил 27 аллелей, наиболее часто встречающиеся с длиной 233, 238 и 231 п.н., что составляет 11 %, 12 % и 12 %, соответственно.

Allele Frequency at VVMD27 for Pop1 (n=108)

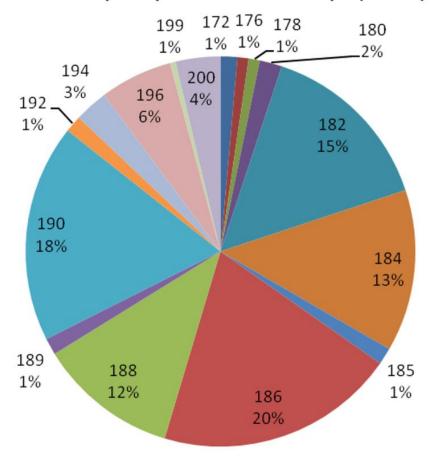


Рисунок 8 – Анализ частот встречаемости в популяции аллелей для локуса VVMD27

Для данного локуса всего было обнаружено 16 аллелей. Частота встречаемости, среди исследуемых сортов и клонов винограда, для локуса VVMD27 распределилась следующим образом: наиболее часто встречаются аллели с длинной в 184 (13 %), 182 (15 %) и 190 (18 %) п.н.

3.1.2 Частота встречаемости всех аллелей изученных SSR-локусов идентифицированных в популяции клонов

Далее представлена общая гистограмма для всех аллелей, отражающая общее количество и состав выявленных состояний для каждого локуса в общей популяции (рисунок 9).

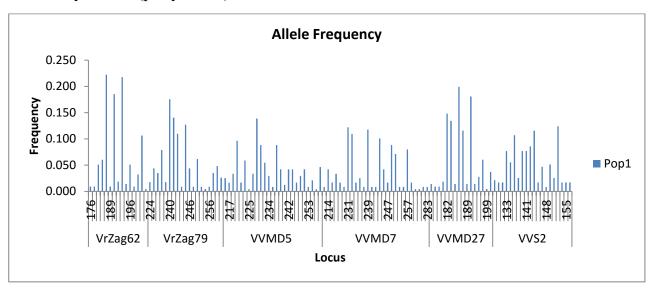


Рисунок 9 – Общая гистограмма по всем аллелям

На представленной гистограмме указана частота встречаемости всех аллелей вместе. Шкала слева указывает частоту встречаемости в которой 1 — это 100%. Шкала снизу указывает количество пар нуклеотидов в ДНК изученных генотипов. Гистограмма показывает, что всего было обнаружено 122 состояния для 6 локусов в 119 образцах. При этом для локуса VrZag62 было обнаружено 15 аллелей, для локуса VrZag79 — 19, для локуса VVS2 — 20, для VVMD5 — 25, для VVMD7 — 27, для VVMD27 — 16. Таким образом, можно заключить, что наибольший полиморфизм показали локусы VVMD7, VVMD5 и VVS2.

Из выше изложенного можно увидеть, что некоторые аллели встречаются крайне часто, а некоторые редко. Некоторые образцы показали между собой заметные отличия по отдельным аллельным состояниям [38, 39, 41, 62, 63].

3.1.3 Кластеризация отдельных групп сортов и клонов при помощи программы DARwin 6

Степень генетического родства оценивалась методом «Одиночной связи» (Single linkage), с использованием программы DARwin 6. Сорта и клоны были объединены в общую группу и кластеризованы. По итогам сделаны выводы, приведенные после древа (рисунок 10).

Дендрограмма демонстрирует то, как сформировались кластеры различных сортов. Следует выделить два больших кластера и 14 меньших подкластеров. По данным, полученным в результате кластеризации, можно сделать следующие выводы.

Клоны сорта Алиготе отличаются друг от друга по локусу VrZag62.

В группе клонов сорта Рислинг сильно отличается от всех остальных клон Рислинг 492. Клоны Рислинг 130, Рислинг 247-5, Рислинг 314111, Рислинг 314111 1, Рислинг 3991, Рислинг 7111891, Рислинг 7121431, Рислинг 7151077п, Рислинг 830, Рислинг 964, Рислинг Алькадар 34, Рислинг Алькадар 43а и Рислинг клон имеют один генотип. К ним можно отнести клоны Рислинг 245-5 и Рислинг 3142092. Клоны Рислинг 143143111, Рислинг 31411111, Рислинг 314991, Рислинг Алькадар 346 и Рислинг Алькадар 34г формируют отдельную ветвь, что указывает на их схожесть и на отличия от основной группы клонов. Рислинг 991 и Рислинг 7-12-201 15-1 1-24-15 выявлены как отличающиеся генотипы.

Клоны сорта Низина не отличаются друг от друга по изученным маркерам.

Среди генотипов клона сорта Супер экстра отличий не найдено.

Клоны сорта Академический отличаются друг от друга по локусу VVMD7.

Клоны сорта Виктор отличаются друг от друга по локусам VVMD5 и VVMD7.

Клоны Солярис 10-11 и Солярис 11-11 друг от друга не отличаются. Различия показали клоны Солярис 70-21 и Солярис 70-16 по локусам VrZag62 и VVMD7.

Клоны Богатяновский 6 куст и Богатяновский 9 куст не отличаются по ДНК-профилям, отличия показал Богатяновский 2 кл 2 ряд по локусу VVMD5.

Клоны Каберне карбон отличаются друг от друга по локусу VrZag79.

Клоны Антоний Великий Ф, Антоний Великий 30-6 и Антоний Великий 30-5 друг от друга не отличаются. Отличия найдены у клона Антоний Великий в локусе VVS2.

У клонов сорта Преображение отличия найдены в локусах VVMD5 и VVMD7.

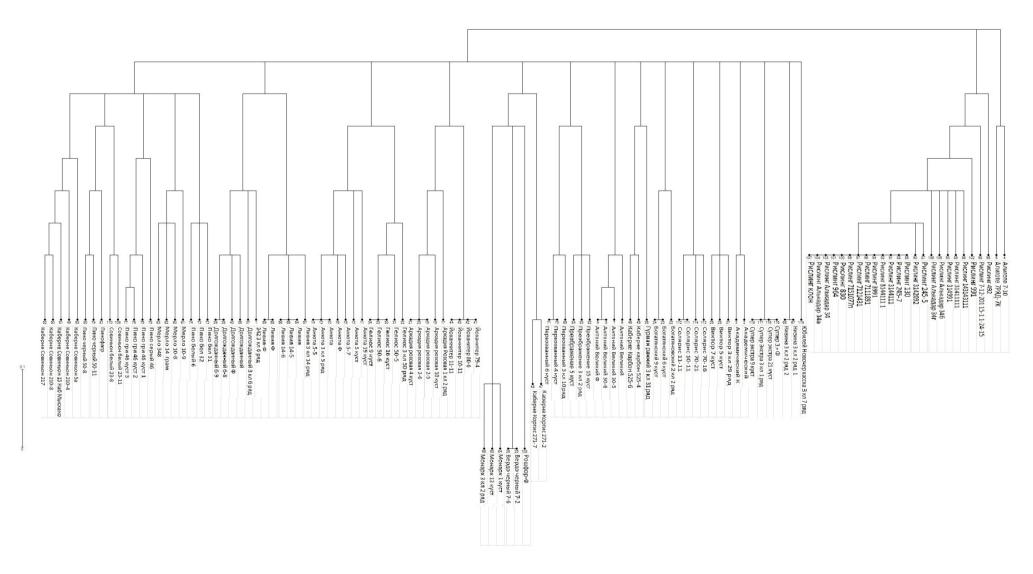


Рисунок 10 – Дендрограмма 119 образцов, основанная на иерархической кластеризации методом «Одиночной связи»

Клоны Первозванный 4 куст и Первозванный 6 куст не отличаются, клон Первозванный 3 кл 10 ряд показал отличие по локусу VVS2.

Клоны Каберне кортис показали отличие по локусу VVMD5.

Клоны сорта Вердо черный не отличаются по генотипу.

Клоны сорта Монарх показали отличия по локусам VVMD7 и VVMD27.

Генотипы клонов сорта Йоханитер на отличаются по изученным маркерам.

Клоны Аркадия розовая 2-5, Аркадия розовая 2-6 и Аркадия розовая 4 куст не отличимы. Клон Аркадия розовая 10 куст показал отличие по локусу VVS2. Клон Аркадия розовая 1 кл 2 ряд показал отличие по локусу VrZag79.

Клоны Гелиос 16 куст, Гелиос 50-6, Гелиос 50-5 и Гелиос 9 куст не отличаются. Клон Гелиос 3 кл 50 ряд показал отличие по локусу VVMD5.

Клоны Анюта, Анюта 3 кл 5 ряд, Анюта 5-5 не отличаются по изученным маркерам. Клоны Анюта Ф и Анюта 5-7 показали отличие по локусам VrZag62 и VrZag79.

Клоны Ливия, Ливия 14-5 и Ливия 14-6, Ливия Ф и Ливия-Ф не отличаются. Клон Ливия 3 кл 5 ряд показал отличие по локусу VVMD5.

В группе клонов Долгожданный отличия показали клоны Долгожданный 3 кл 6 ряд и Долгожданный по локусам VrZag62, VVMD7, VrZag79 и VVMD5.

Клоны сорта Пино белый показали отличия по локусам VrZag62, VrZag79 и VVMD5.

Клоны сорта Мерло также показали отличия по локусам VrZag62, VrZag79 и VVMD5.

В группе клонов Пино гри, наиболее отличается Пино серый 46, показавший отличия по локусу VrZag79. Остальные отличались по локусам VrZag79, VVMD5 и VVMD27.

Клоны Совиньон белый отличались друг от друга по локусу VVMD7.

Клоны сорта Пино черный 50-11 и Пино черный 50-8 показали несущественные различия, в то время как клон Пинофагр показал отличия по локусам VrZag62 и VrZag79.

В группе клонов Каберне Совиньон существенные отличия показал Каберне Совиньон 5а по локусам VrZag62, VrZag79 и VVMD5.

Таким образом, дендрограмма объединила 119 образцов на основе данных о 6 микросателлитных маркеров. В первый кластер вошли сорта Каберне Совиньон, Пино черный, Совиньон блан, Мерло и Пино белый. Эти генотипы принадлежат к западноевропейской группе сортов, среди родителей которых имеются общие предки, такие как Каберне фран, Совиньон блан, Траминер и Пино менье. Сорта Долгожданный, Ливия, Анюта, Гелиос и Аркадия розовая находятся в разных кластерах, но близки по родству, так как являются гибридами, полученными в результате селекции при скрещивании таких сортов как Талисман, Кишмиш лучистый и Аркадия, то есть имеют общих родителей. При анализе родословной генотипов Йоханитер, Монарх, Рошфор и Каберне Кортис было выявлено, что у всех у них есть общий предок – Шасла и Шасла северная. В эту же группу были внесены и клоны сорта Вердо чёрный, так как он имеет похожие локусные состояния по изученным маркерам. Такие клоны как Преображение, Антоний Великий, Гурман ранний, Богатяновский, Виктор, Супер Экстра и Низина, также являются гибридами, полученными в результате скрещивания сортов Кишмиш лучистый и Аркадия, и поэтому находятся рядом. Среди них были такие генотипы как Каберне карбон и Солярис. Каберне карбон по некоторым молекулярным маркерам похож на Гурман ранний, также они оба не имеют данных по аллели VVMD27. Клоны сорта Солярис выделены в отдельную группу, хотя также и похожи по аллельным состояниям на другие генотипы. Отдельным сортом выделен Юбилей Новочеркасска, так как является сложным межвидовым гибридом неизвестного происхождения. Клоны сорта Рислинг и Алиготе объединены в отдельный кластер, так как среди родителей, предположительно, имеют общего предка – Gouais Blanc, которого нет у всех других сортов.

Анализируя все вышеперечисленное, можно сделать заключение не только об описанных выше отличиях среди клонов, но и об эффективности выбранных методов изучения, так как все генотипы были сгруппированы по сортовым кластерам. По результатам анализа программой DARWin 6 можно сделать вывод, что некоторые образцы, несмотря на наличие сильного сходства, отличаются генетическими профилями. Это же утверждение подтверждено и агробиологиче-

скими и ампелографическими исследованиями, проведенными нами и аспирантами Звягиным А. С. и Подваленко П. П. [50, 59, 61], а также при изучении на Государственном сортоиспытании (приложения $B - \coprod, C$ и D).

3.1.4 Анализ генетического разнообразия аборигенных сортов винограда с использованием микросателлитных маркеров

Для исследования генетического разнообразия аборигенных сортов были использованы 25 микросателлитных маркеров. В ходе использования микросателлитных маркеров было выявлено, что они обладают разным уровнем полиморфизма и гетерозиготности.

Таблица 13 – Полиморфизм локусов, выявленный с помощью микросателлитных маркеров

		1 1
Количество выявленных аллелей	Но	Не
14	0.832	0.865
16	0.868	0.832
14	0.676	0.773
15	0.800	0.855
13	0.800	0.858
13	0.854	0.809
20	0.874	0.842
15	0.804	0.866
10	0.788	0.785
13	0.642	0.767
12	0.581	0.679
6	0.980	0.694
16	0.817	0.879
10	0.575	0.807
14	0.755	0.819
9	0.684	0.730
19	0.854	0.881
18	0.717	0.894
14	0.707	0.755
8	0.663	0.685
29	0.744	0.898
6	0.450	0.443
20	0.806	0.900
8	0.567	0.704
17	0.840	0.883
	Количество выявленных аллелей 14 16 14 15 13 13 20 15 10 13 12 6 16 10 14 9 19 18 14 8 29 6 20 8	Количество выявленных аллелей Но 14 0.832 16 0.868 14 0.676 15 0.800 13 0.800 13 0.854 20 0.874 15 0.804 10 0.788 13 0.642 12 0.581 6 0.980 16 0.817 10 0.575 14 0.755 9 0.684 19 0.854 18 0.717 14 0.707 8 0.663 29 0.744 6 0.450 20 0.806 8 0.567

Примечания:

^{1.} Но – наблюдаемая гетерозиготность

^{2.} Не – ожидаемая гетерозиготность

Согласно таблице 13, исследованные локусы показали различный уровень полиморфизма. Наблюдалось от 6 до 29 аллелей на локус.

В представленной группе маркеров наиболее низкий уровень полиморфизма показали VrZag83 и VVIN73. Средний уровень полиморфизма был у маркеров VVMD24, VVIN16, VVIQ52, VVMD25, VVMD21, VVIB01, VrZag62, VrZag79, VVIP60, VrZAG47, VVMD7, VMC1B11 и VVIH54. Наибольшее аллельное разнообразие показали VVMD5, VVMD32, VVS2, VVMD27, VVIP31, VVIV37, VrZag67, VVMD28, VMC4f3.1 и VVIV67.

Ожидаемая гетерозиготность варьировала от 0,443 (VVIN73) до 0,9 (VMC4f3.1).

Наблюдаемая гетерозиготность была в пределах от 0,45 (VVIN73) до 0,98 (VrZag83). Для локусов VrZag79, VrZag83, VVIN73, VVMD25, VVMD28 и VVS2 фактическая гетерозиготность превышает ожидаемую, что указывает на высокую полиморфность данных микросателлитов внутри изученной группы генотипов.

По результатам фрагментарного анализа в секвенаторе ABI 3130xl, все сорта, кроме Гок ала и Кок ала обладали уникальным набором аллелей, позволяющим идентифицировать их как уникальные генотипы. Для подтверждения, они были сравнены с Международным банком данных, в результате чего каждый генотип был определён как чистосортный.

В таблице 13 представлено разнообразие аллельных состояний для 9 основных маркеров OIV, использованных при идентификации и паспортизации аборигенных сортов и дикорастущего винограда. Полные данные о всех 25 использованных SSR-маркерах вынесены в приложение Ю, в таблицах Ю1–Ю25.Они были проанализированы с помощью программы GenAlEx 6.3 для понимания состава генетического пула коллекции АЗОС СКЗНИИСиВ.

Пики, полученные в ходе работы генетического анализатора, были исследованы в программе GeneMapper 4.0. Полученные данные были занесены в таблины «Excel».

Таблица 14 — ДНК-паспорта аборигенных сортов и дикорастущего винограда, полученные в ходе анализа с использованием 9 SSR-маркеров, рекомендованных OIV

		Ми	кросателлит	ные локусы		
Название сорта	VrZAG47	VrZAG47	VVS2	VVS2	VVMD7	VVMD7
1	2	3	4	5	6	7
Абинск №3	186	190	133	153	239	239
Абинск №5	216	218	135	143	245	245
Абинск№6	184	186	125	151	239	249
Абинск №7	218	218	135	145	245	245
Абинск №8	218	224	133	145	229	229
Абинск №9	212	218	135	143	251	251
Аджем мискет	182	188	143	145	239	239
Аг изюм	180	195	135	145	249	249
Аккерманский черный	182	195	133	143	239	249
Аклык желтый	195	195	143	145	239	249
Аленький	180	195	133	135	239	249
Алый терский	182	195	135	143	245	249
Амет аджи ибрам	180	182	143	143	239	239
Асма	186	195	149	151	243	247
Байат капи	182	182	135	145	239	243
Богос зерва	182	182	145	149	239	239
Бор кара	176	186	141	143	239	253
Борю изюм	190	195	135	137	239	249
Брусковатенький	180	182	129	143	239	243
Будай шули	180	186	141	143	239	247
Буланый белый	180	184	133	145	239	239
Чауш чабан	180	190	135	143	243	247
Чолбер	180	182	133	135	239	247
Чоркутца розове	182	195	133	135	239	239
Даманка 1	188	190	133	155	239	239
Даманка 7	190	195	133	149	263	263
Демир кара	180	188	135	145	239	253
Докур	186	186	135	151	249	249
Дубут шире цпитс	182	195	135	145	239	259
Джагар	182	186	135	143	245	259
Джеват кара	180	184	143	145	239	249
Джунга	182	195	135	137	239	239
Джварк	180	195	135	141	249	259
Ефремовский	180	180	133	135	249	249
Ефремовский второй	180	180	133	143	239	247
Емчек изюм	186	195	135	143	249	249
Галабура	180	186	143	143	239	239
Гендерил цибил	180	186	145	145	245	249
Гок ала	180	186	135	143	235	235
Гор. Ключ 1 новый	188	188	133	151	239	263
Гюляби белый	195	195	135	143	245	249
Гюляби дагестанский	182	195	135	137	239	249

Продолжение таблицы 14

1	2	3	4	5	6	7
Ири тумут	186	195	135	143	233	245
Кабассия	186	195	133	143	239	249
Кайтаги	182	190	135	143	235	249
Кандаваста	182	188	143	145	239	249
Кечи эмчек черный	184	184	0	0	239	239
Хади тумут	180	195	135	137	247	259
Халили изюм	188	190	145	145	239	249
Харко	180	184	133	145	239	239
Хатал баар	190	193	143	145	239	245
Хатми	186	195	135	143	249	249
Херсонесский	182	188	143	145	239	263
Хоп халат	182	193	133	143	239	247
Хотса цибил	188	190	135	143	239	243
Хруптун белый	182	184	143	143	239	239
Кизиловый	180	188	133	137	239	251
Кизлярский синий	193	195	135	135	239	249
Кода гросса	182	195	143	143	249	253
Кок ала	180	186	135	143	235	249
Кок хабах	184	186	137	149	249	253
Кокурдес белый	186	188	137	145	243	249
Кокурдес черный	180	182	137	143	0	0
Красностоп анапский	190	190	133	145	239	265
Красностоп золотовский	190	190	133	145	239	265
Краснянский	180	190	133	141	247	249
Крестовский	186	190	135	135	249	249
Кукан цибил	182	193	133	143	239	247
Кукановский	188	190	143	145	249	265
Кумшатский белый	186	195	145	145	239	247
Латсу кере	186	190	125	137	247	249
Лесной белый марагинский	180	195	135	143	247	259
Лизи хутсран	182	190	135	143	235	239
Майкоп № 1	184	184	133	151	239	249
Майкоп № 2	184	184	133	151	239	249
Майкоп №3	184	184	133	151	239	249
Майкоп №4	180	190	133	151	233	239
Майкоп №5	184	184	133	151	239	239
Майкоп №7	184	190	151	151	239	249
Махбор цибил	193	195	135	145	239	245
Мисгюли кара	182	184	145	149	249	253
Мола гусейн цибил	182	186	135	145	245	249
Мствивани мескхури	186	195	135	143	247	249
Нарма	184	195	135	149	249	249
Пухляковский	180	182	133	143	239	239
Риш баба	182	186	139	151	249	249

Продолжение таблицы 14

1	_				T	T
1 Сафта дурмаз	180	3 195	135	5 141	6 239	7 247
Сары кокур	184	186	143	143	239	249
Сары пандас	182	188	147	151	249	249
Шабаш	180	186	131	143	239	253
Шампанчик	182	186	135	135	239	249
Шампанчик бессергеневский	180	180	143	145	245	245
Шавбарда	186	190	137	143	249	249
Шавраны	182	195	135	143	245	249
Шилохвостый	186	195	133	145	249	251
Сибирьковый	180	182	133	143	239	239
Тавлинский черный	182	186	135	143	235	247
Тавлинский поздний	182	193	143	143	239	245
Толстокорый	182	186	135	135	249	249
Цимлянский белый	180	186	123	151	235	249
Тумут кара	182	190	135	143	0	0
Турба плотная белая	186	195	135	155	239	239
Варюшкин	186	195	133	143	239	245
Йай изюм белый	180	182	125	145	249	259
Яных зерва	186	186	145	155	239	247
Желудёвый	190	192	135	143	231	239
		N	Микросате лли	итные локусы		
Название сорта	VVMD28	VVMD28	VVMD32	VVMD32	VVMD25	VVMD25
1 Абинск №3	0	0	248	5 248	6	7
Абинск №5	0	0	264	264	239	239
Абинск№6	0	0	250	264	249	267
Абинск №7	234	242	0	0	235	239
Абинск №8	0	0	226	278	239	243
Абинск №9	234	242	0	0	239	267
Аджем мискет	236	258	250	262	241	255
Аг изюм	240	258	244	272	241	241
Аккерманский черный	228	248	252	272	239	249
Аклык желтый	244	278	250	272	239	241
Аленький	236	246	264	272	249	255
Алый терский	244	248	256	272	241	255
Амет аджи ибрам	0	0	250	250	249	255
Асма	234	258	250	272	249	249
Байат капи	234	240	250	256	239	241
Богос зерва	236	258	252	262	245	255
Бор кара	236	236	250	272	241	267
Борю изюм	234	244	272	272	241	241
Брусковатенький	244	244	240	258	237	255
Будай шули	234	272	250	258	239	255
Буланый белый	234	258	262	272	249	255
	•	•	•	•	•	

Продолжение таблицы 14

1	2	3	4	5	6	7
Чауш чабан	218	236	240	272	255	255
Чолбер	0	0	256	262	255	255
Чоркутца розове	236	248	256	264	239	255
Даманка 1	228	236	240	240	0	0
Даманка 7	228	236	240	248	249	249
Демир кара	258	258	250	272	241	249
Докур	236	258	250	272	245	249
Дубут шире цпитс	240	248	244	250	239	241
Джагар	234	258	250	272	241	255
Джеват кара	236	258	262	272	241	255
Джунга	240	258	244	262	239	255
Джварк	236	258	250	262	239	267
Ефремовский	234	246	272	272	241	255
Ефремовский второй	234	260	252	264	239	249
Емчек изюм	258	260	250	272	241	255
Галабура	236	246	252	252	239	249
Гендерил цибил	0	0	250	252	241	241
Гок ала	234	258	252	272	241	255
Гор. Ключ 1 новый	236	264	248	250	239	249
Гюляби белый	234	234	252	252	241	241
Гюляби дагестанский	236	258	256	272	239	239
Ири тумут	236	258	0	0	241	255
Кабассия	234	236	252	252	239	249
Кайтаги	244	248	240	256	239	255
Кандаваста	248	258	250	272	241	249
Кечи эмчек черный	236	258	252	262	245	255
Хади тумут	240	258	244	250	0	0
Халили изюм	258	258	258	262	241	255
Харко	234	258	262	272	249	255
Хатал баар	236	248	252	262	241	255
Хатми	258	258	250	272	241	255
Херсонесский	236	258	240	256	255	255
Хоп халат	236	258	256	256	255	255
Хотса цибил	0	0	250	252	255	255
Хруптун белый	236	236	250	264	249	255
Кизиловый	248	258	272	272	239	241
Кизлярский синий	244	258	252	272	241	255
Кода гросса	228	248	264	272	255	257
Кок ала	234	258	252	272	241	255
Кок хабах	236	258	252	256	241	241
Кокурдес белый	258	258	250	256	239	241
Кокурдес черный	258	258	0	0	241	249
Красностоп анапский	236	244	248	252	239	249
Красностоп золотовский	236	244	248	252	239	249

Продолжение таблицы 14

1	2	3	4	5	6	7
Краснянский	228	236	254	262	239	267
Крестовский	0	0	264	268	241	241
Кукан цибил	236	258	256	256	255	255
Кукановский	248	258	250	252	255	255
Кумшатский белый	0	0	240	240	239	241
Латсу кере	0	0	252	272	239	241
Лесной белый марагинский	236	260	244	250	239	255
Лизи хутсран	240	244	244	272	239	255
Майкоп № 1	254	264	248	250	249	267
Майкоп № 2	254	264	248	250	249	267
Майкоп №3	254	264	248	250	249	267
Майкоп №4	258	264	240	248	249	255
Майкоп №5	254	264	248	250	249	267
Майкоп №7	248	264	250	250	249	267
Махбор цибил	244	276	252	256	241	255
Мисгюли кара	236	258	252	272	241	245
Мола гусейн цибил	248	258	250	272	241	241
Мствивани мескхури	236	258	252	258	239	255
Нарма	236	258	244	244	241	249
Пухляковский	234	236	236	240	239	249
Риш баба	236	246	250	272	249	255
Риш баба розовый	236	258	252	272	241	245
Сафта дурмаз	236	258	250	272	239	255
Сары кокур	258	258	262	272	255	255
Сары пандас	258	258	250	262	245	255
Шабаш	258	278	252	272	249	255
Шампанчик	240	258	0	0	239	267
Шампанчик бессергеневский	258	270	252	252	239	241
Шавбарда	234	248	258	262	239	255
Шавраны	244	248	256	272	241	255
Шилохвостый	258	258	272	272	239	241
Сибирьковый	234	258	262	264	239	255
Тавлинский черный	234	243	256	272	241	255
Тавлинский поздний	236	240	256	262	239	255
Толстокорый	240	258	244	272	239	241
Цимлянский белый	226	236	248	272	241	249
Тумут кара	0	0	240	256	255	255
Турба плотная белая	228	246	272	272	239	255
Варюшкин	248	258	252	252	239	241
Йай изюм белый	240	258	244	262	241	241
Яных зерва	236	244	272	272	241	245
Желудёвый	242	268	240	256	255	255

Продолжение таблицы 14

— Шарранна аселия	V70 -70		Микросателл			V#70062
Название сорта	VrZag79	VrZag79	VVMD5	VVMD5 5	VrZag62 6	VrZag62
1 A E No.2						
Абинск №3	251	251	234	236	192	200
Абинск №5	255	259	232	254	190	190
Абинск№6	251	251	230	230	194	196
Абинск №7	259	261	266	266	190	190
Абинск №8	0	0	268	268	214	214
Абинск №9	249	255	264	268	188	188
Аджем мискет	251	251	242	248	188	196
Аг изюм	255	257	230	238	200	202
Аккерманский черный	249	259	240	248	188	202
Аклык желтый	257	259	236	238	188	200
Аленький	249	255	228	230	186	196
Алый терский	251	259	238	238	196	200
Амет аджи ибрам	237	237	236	248	188	194
Асма	239	243	234	242	192	196
Байат капи	259	259	236	242	188	204
Богос зерва	239	249	240	248	200	204
Бор кара	237	243	238	242	200	202
Борю изюм	243	257	236	236	188	200
Брусковатенький	247	259	230	238	184	188
Будай шули	249	251	238	238	202	204
Буланый белый	239	251	240	242	188	204
Чауш чабан	249	259	230	240	200	204
Чолбер	245	251	238	242	200	204
Чоркутца розове	249	259	230	248	188	196
Даманка 1	251	255	230	232	194	194
Даманка 7	0	0	230	230	0	0
Демир кара	239	251	234	242	188	200
	259	251	234	236	196	200
Докур						
Дубут шире цпитс	251	259	230	236	188	196
Джагар	251	259	236	236	196	196
Джеват кара	249	251	230	238	192	204
Джунга	251	259	230	240	188	190
Джварк	237	251	236	242	196	200
Ефремовский	247	255	238	240	186	188
Ефремовский второй	237	251	240	248	188	204
Емчек изюм	251	257	226	238	200	200
Галабура	239	251	228	234	188	188
Гендерил цибил	239	251	0	0	194	202
Гок ала	249	251	234	238	194	200
Гор. Ключ 1 новый	251	251	230	230	194	194
Гюляби белый	251	257	236	238	196	200
Гюляби дагестанский	257	259	230	236	188	200
Ири тумут	251	251	236	236	188	196

Продолжение таблицы 14

1	2	3	4	5	6	7
Кабассия	249	251	234	248	188	204
Кайтаги	251	259	242	242	194	194
Кандаваста	251	259	230	248	196	202
Кечи эмчек черный	239	249	230	248	200	204
Хади тумут	251	255	230	240	190	196
Халили изюм	243	251	230	248	194	196
Харко	239	251	240	242	188	204
Хатал баар	239	243	242	242	202	202
Хатми	251	257	226	238	200	200
Херсонесский	233	251	230	234	178	194
Хоп халат	239	245	238	242	202	204
Хотса цибил	243	251	230	242	196	200
Хруптун белый	239	259	230	240	188	204
Кизиловый	251	251	238	248	188	200
Кизлярский синий	257	261	230	238	188	200
Кода гросса	243	257	230	236	200	204
Кок ала	249	251	234	238	194	200
Кок хабах	249	251	230	240	184	200
Кокурдес белый	251	251	238	240	194	200
Кокурдес черный	247	259	238	242	196	200
Красностоп анапский	243	255	224	248	188	196
Красностоп золотовский	243	255	224	248	188	196
Краснянский	239	239	234	242	200	204
Крестовский	251	259	234	236	200	202
Кукан цибил	239	245	236	240	202	204
Кукановский	251	255	230	238	194	196
Кумшатский белый	251	259	236	238	194	194
Латсу кере	237	251	240	242	190	194
Лесной белый марагинский	255	257	226	236	190	196
Лизи хутсран	243	259	230	238	188	194
Майкоп № 1	237	251	230	230	194	194
Майкоп № 2	237	251	230	230	194	194
Майкоп №3	237	251	230	230	194	194
Майкоп №4	249	251	230	230	194	204
Майкоп №5	237	251	230	230	194	194
Майкоп №7	251	251	230	230	194	196
Махбор цибил	251	261	230	234	188	202
Мисгюли кара	249	259	238	248	192	200
Мола гусейн цибил	251	259	238	238	200	202
Мствивани мескхури	251	257	238	242	188	194
Нарма	249	251	236	238	188	196
Пухляковский	251	259	240	248	188	188
Риш баба	251	259	226	236	196	204
Риш баба розовый	249	259	238	248	192	200

Окончание таблицы 14

1	2	3	4	5	6	7
Сафта дурмаз	243	249	236	236	190	200
Сары кокур	243	251	230	238	188	200
Сары пандас	251	259	230	240	194	202
Шабаш	251	257	238	240	188	204
Шампанчик	0	0	230	238	202	202
Шампанчик бессергеневский	257	257	238	242	188	204
Шавбарда	251	253	234	236	196	204
Шавраны	251	259	238	238	196	200
Шилохвостый	251	251	234	248	200	204
Сибирьковый	251	259	230	240	188	188
Тавлинский черный	251	259	230	238	0	0
Тавлинский поздний	239	259	238	242	202	202
Толстокорый	251	259	230	238	200	202
Цимлянский белый	237	247	230	240	202	204
Тумут кара	251	251	230	242	188	194
Турба плотная белая	249	259	228	236	188	196
Варюшкин	249	251	0	0	192	202
Йай изюм белый	251	259	236	242	194	196
Яных зерва	0	0	238	242	188	204
Желудёвый	255	259	228	230	194	220

Примечание:

Размер амплифицированных фрагментов в таблице указан в парах нуклеотидов (п.н.)

Анализ вышеприведенных данных показывает, что среди описанных генотипов присутствуют два синонима — это сорт Гок ала и сорт Кок ала. Полученные данные свидетельствуют о чистосортности коллекции и наличии в Краснодарском крае и Республики Адыгея дикого лесного винограда Vitis silvestris Gmel., которые являются близкородственными, несмотря на разные ареалы обитания.

Частота встречаемости обнаруженных у исследованных образцов аллелей по каждому микросателлитному маркеру, а также их процентное соотношение указаны далее в диаграммах и гистограммах (рисунки 11–36), полученые после анализа данных программой GenAlEx 6.3.

Для лучшего понимания родственных взаимосвязей между исследованными генотипами, полный перечень данных ДНК-паспортов приведенный в приложении Ю, был кластеризован с использованием метода «Одиночной связи» в программе DARWin 6, а результаты проанализированы. На рисунках 11–12 представлено аллельное разнообразие для локусов VrZag62 и VrZag79.

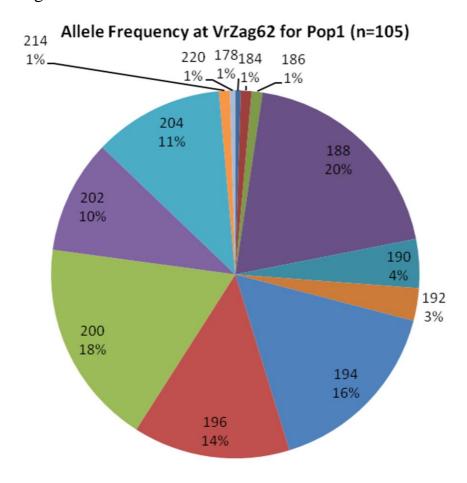


Рисунок 11 – Анализ частот встречаемости в популяции аллелей для локуса VrZag62

Рисунок 11 демонстрирует, что для данного локуса всего было обнаружено 13 аллельных состояний. Частота встречаемости, среди исследуемых сортов и клонов винограда, для маркера VrZag62 распределилась следующим образом: наиболее часто встречаются аллели с длиной в 194 (16 %), 200 (18 %) и 188 (20 %) п.н.

Allele Frequency at VrZag79 for Pop1 (n=103)

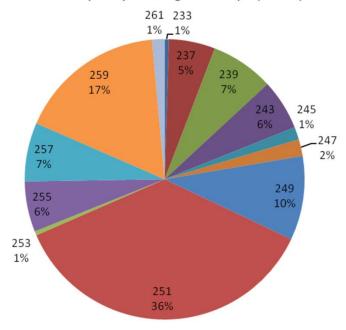


Рисунок 12 – Анализ частот встречаемости в популяции аллелей для локуса VrZag79

Из представленной гистограммы видно, что частота встречаемости аллелей локуса VrZag79 среди исследуемых сортов и клонов винограда распределилась следующим образом: наиболее часто встречаются аллели с длиной в 249 (10 %), 259 (17 %) и 251 (36 %) п.н. Всего для данного локуса было обнаружено 13 аллельных состояний.

На рисунке 13 представлено аллельное разнообразие для локуса VVS2.

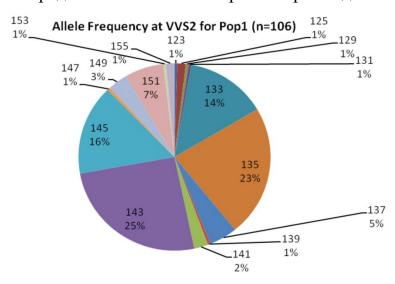


Рисунок 13 — Анализ частот встречаемости в популяции аллелей для локуса VVS2

Для локуса VVS2 всего было обнаружено 16 состояний. Частота встречаемости аллелей среди исследуемых сортов и клонов винограда

распределилась следующим образом: наиболее часто встречаются аллели с длинной в 145 (16 %), 135 (23 %) и 143 (25 %) п.н.

На рисунках 14–16 представлено аллельное разнообразие для локусов VVMD5, VVMD7 и VVMD27.

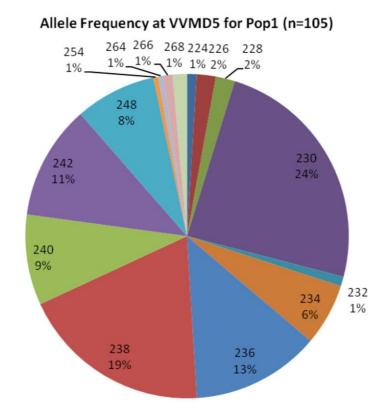


Рисунок 14 – Анализ частот встречаемости в популяции аллелей для локуса VVMD5

Представленная диаграмма демонстрирует, что для данного локуса всего было обнаружено 15 состояний. Частота встречаемости среди исследуемых сортов и клонов винограда для локуса VVMD5 распределилась следующим образом: наиболее часто встречаются аллели с длинной в 236 (13 %), 238 (19 %) и 230 (24 %) п.н.

Allele Frequency at VVMD7 for Pop1 (n=105)

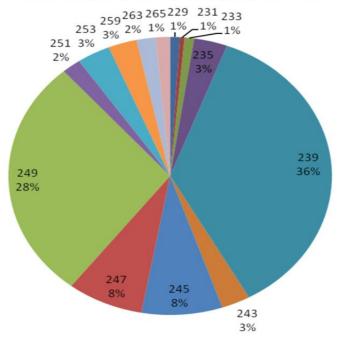


Рисунок 15 – Анализ частот встречаемости в популяции аллелей для локуса VVMD7

Для данного локуса всего было обнаружено 14 состояний. Частота встречаемости среди исследуемых сортов и клонов винограда для локуса VVMD7 распределилась следующим образом: наиболее часто встречаются аллели с длинной в 247 и 245 (8 %), 249 (19 %) и 239 (24 %) п.н.

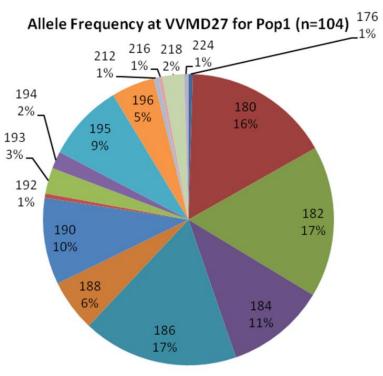


Рисунок 16 – Анализ частот встречаемости в популяции аллелей для локуса VVMD27

Из рисунка 16 видно, что для данного локуса всего было обнаружено 16 состояний. Частота встречаемости среди исследуемых сортов и клонов винограда для локуса VVMD27 распределилась следующим образом: наиболее часто встречаются аллели с длинной в 180 (16 %), 182 и 186 (17 %) п.н.

3.1.5 Частота встречаемости всех идентифицированных аллелей изученных SSR-локусов среди аборигенных сортов и дикорастущего винограда

Далее представлена общая гистограмма для всех аллелей, отражающая общее количество и состав выявленных состояний для каждого локуса в общей выборке генотипов (рисунок 17).

На представленной гистограмме указана частота встречаемости всех аллелей вместе. Названия аллелей зашифрованы как цифры, расшифровка далее в интерпретации рисунка в скобках после названия локуса. Шкала слева указывает частоту встречаемости в которой 1 – это 100 %. Шкала снизу указывает количество пар нуклеотидов в ДНК изученных генотипов. Гистограмма показывает, что всего было обнаружено 349 состояний для 25 локусов в 107 образцах.

При этом выявлено, что для локуса VrZag47 (1) обнаружено 14 аллельных состояний, для локуса VVS2 (2) — 16, для VVMD7 (3) — 14, для VVMD5 (4) — 15, для VrZag62 (5) — 13, для VrZag79 (6) — 13, для VVMD28 (7) — 20, для VVMD32 (8) — 15, для VVMD25 (9) — 10, для VVIP60 (10) — 13, для VVIB01 (11) — 12, для VrZag83 (12) — 6, для VVMD27 (13) — 16, для VVMD21 (14) — 10, для VMC1B11 (15) — 14, для VVIQ52 (16) — 9, для VrZag67 (17) — 19, для VVIV37 (18) — 18, для VVIH54 (19) — 14, для VVMD24 (20) — 8, для VVIV67 (21) — 29, для VVIN73 (22) — 6, для VMC4f3.1 (23) — 20, для VVIN16 (24) — 8, для VVIP31 (25) — 17.

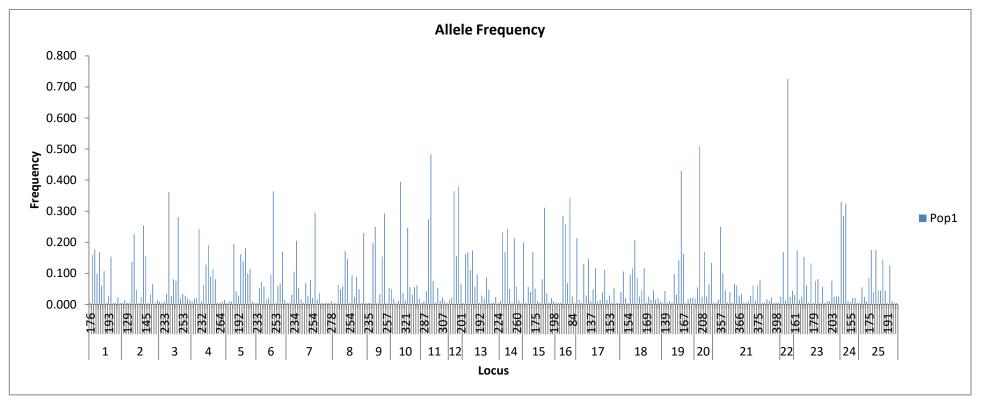


Рисунок 17 – Общая гистограмма по всем аллелям для аборигенных сортов

Далее приводится более подробный анализ частот встречаемости дополнительных SSR-маркеров, используемых для поиска родителей и родственных взаимосвязей между аборигенными сортами. Так как они были представлены на рисунке 17 вместе, то для более наглядного объяснения анализ частот встречаемости будет в виде диаграмм для каждого локуса отдельно.

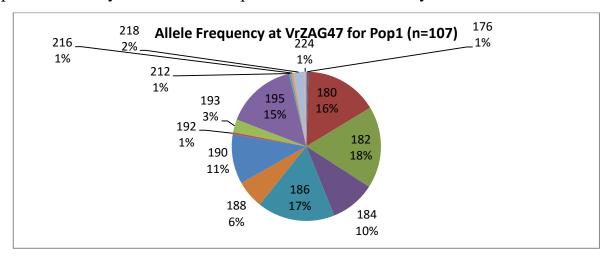


Рисунок 18 – Анализ частот встречаемости аллелей локуса VrZag47

Рисунок 18 демонстрирует, что для локуса VrZag47 было обнаружено 14 аллелей, с разной частотой встречаемости. Наиболее распространённые из них аллели, длинной в 182 (18 %), 186 (17 %) и 180 (16 %) п.н.

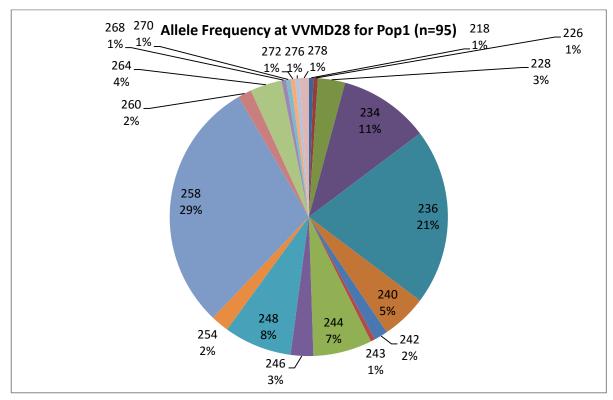


Рисунок 19 – Анализ частот встречаемости аллелей локуса VVMD28

Для локуса VVMD28 было обнаружено 20 аллелей, из которых наиболее часто встречаются с длиной 258 (29 %), 236 (21 %) и 234 (11 %) п.н., что продемонстрировано на диаграмме рисунка 19.

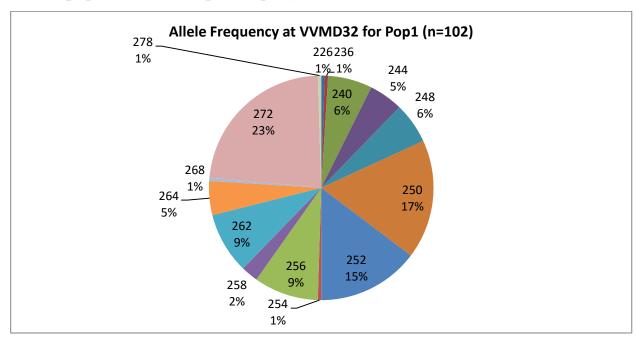


Рисунок 20 – Анализ частот встречаемости аллелей локуса VVMD32

Частота встречаемости и состав аллелей локуса VVMD32 при анализе выборки образцов сформировалась следующим образом. Наиболее часто встречаются микросателлиты длиной в 272 (23 %), 250 (17 %) и 252 (15 %) п.н., что продемонстрировано на рисунке 20.

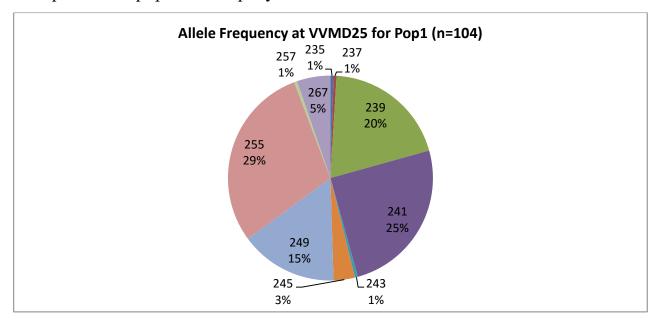


Рисунок 21 – Анализ частот встречаемости аллелей локуса VVMD25

Рисунок 21 показывает, что при анализе выборки образцов всего было обнаружено 10 аллелей, из которых наиболее часто встречаются микросателлиты длиной в 255 (29 %), 241 (25 %) и 239 (20 %) п.н.

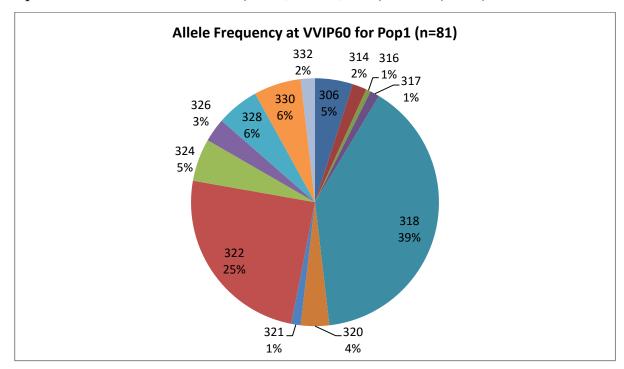


Рисунок 22 – Анализ частот встречаемости аллелей локуса VVIP60

Анализ диаграммы, изображенной на рисунке 22, позволяет сделать вывод, что для локуса VVIP60 выявлено 13 аллелей. Наиболее распространенные из них локусы, имеющие 318 (39 %), 322 (25 %), 328 и 330 (6 %) п.н.

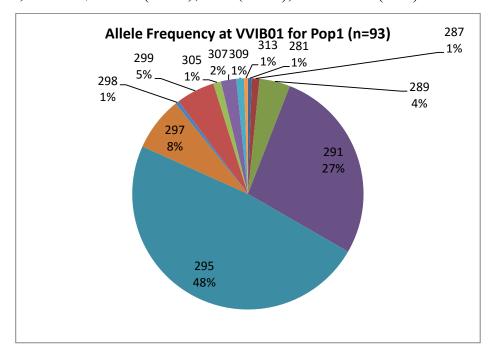


Рисунок 23 – Анализ частот встречаемости аллелей локуса VVIB01

При анализе генотипов с использованием SSR-маркера VVIB01 было обнаружено 12 состояний аллели, из которых наиболее часто встречаются микросателлиты с длиной в 295 (48 %), 291 (27 %) и 297 (8 %) п.н., что продемонстрировано на рисунке 23.

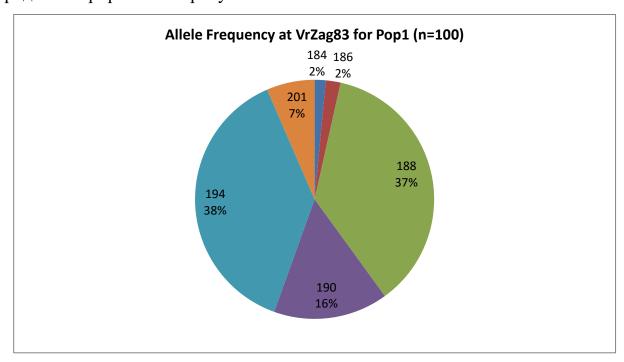


Рисунок 24 – Анализ частот встречаемости аллелей локуса VrZag83

Рисунок 24 показывает, что для локуса VrZag83 было обнаружено всего 6 аллелей, из которых наиболее часто встречаются с длиной 194 (38 %), 188 (36 %) и 190 (16 %) п.н.

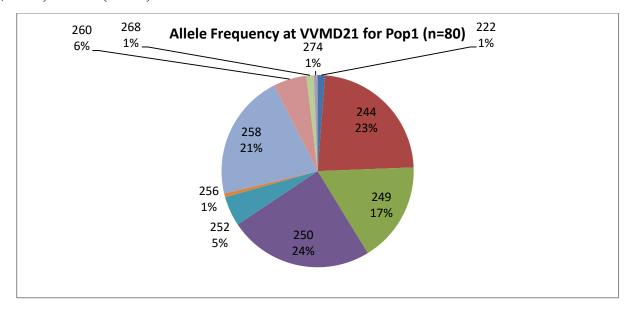


Рисунок 25 – Анализ частот встречаемости аллелей локуса VVMD21

Анализ частот встречаемости среди генотипов локуса VVMD21 показал, что всего было обнаружено 10 состояний. Наиболее часто встречаются мироксателлиты длиной в 250 (24 %), 244 (23 %) и 258 (21 %) п.н., что продемонстрировано на рисунке 25.

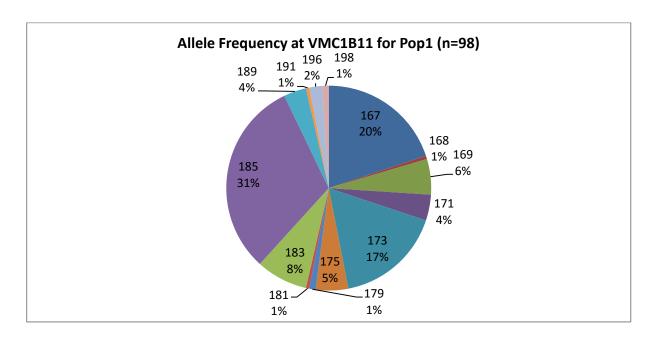


Рисунок 26 – Анализ частот встречаемости аллелей локуса VMC1B11

Рисунок 26 демонстрирует распределение частот встречаемости аллелей локуса VMC1B11. Наиболее часто встречаются локусы с длиной микросателлита в 185 (31 %), 167 (20 %) и 173 (17 %) п.н. Всего было обнаружено 14 состояний.

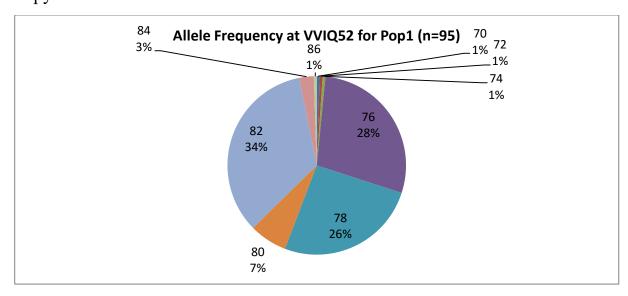


Рисунок 27 – Анализ частот встречаемости аллелей локуса VVIQ52

Для локуса VVIQ52 было обнаружено 9 состояний аллелей. Из них наиболее часто встречаются микросателлиты с длиной 82 (34 %), 76 (28 %) и 78 (26 %) п.н., что видно из рисунка 27.

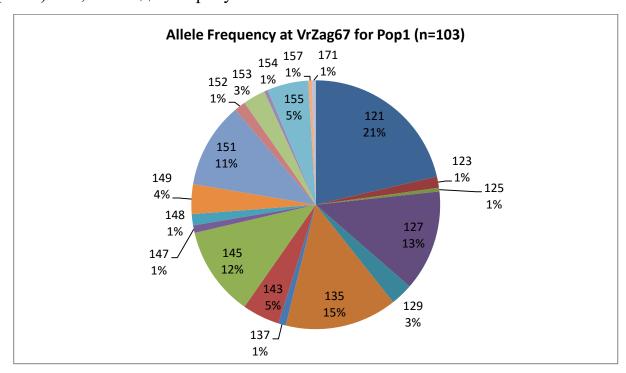


Рисунок 28 – Анализ частот встречаемости аллелей локуса VrZag67

Как представлено на рисунке 28, по результатам анализа генотипов аборигенных сортов и дикорастущего винограда с использованием SSR-маркера VrZag67, обнаружено присутствие 19 аллельных состояний для данного локуса. При этом.наиболее часто представлены микросателлиты длиной в 121 (21 %), 135 (15 %) и 127 (13 %) п.н.

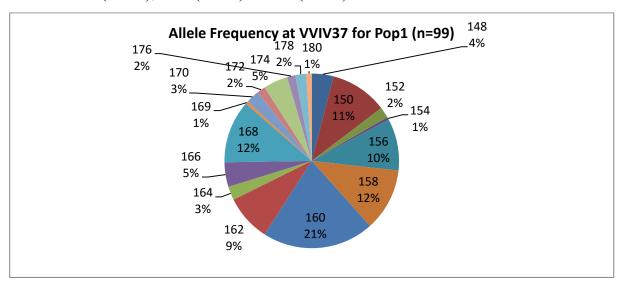


Рисунок 29 – Анализ частот встречаемости аллелей локуса VVIV37

Согласно рисунку 29, для локуса VVIV37 всего было выявлено присутствие 18 аллелей. Наиболее часто распространнены микросателлиты длиной в 160 (21 %), 158, 168 (12 %) и 150 (11 %) п.н.

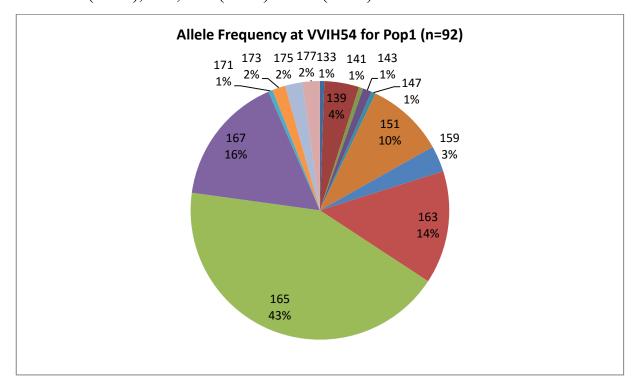


Рисунок 30 – Анализ частот встречаемости аллелей локуса VVIH54

Как представлено на рисунке 30, при анализе частот встречаемости аллелей локуса VVIH54, всего было обнаружено 14 аллелей, из которых наиболее часто встречаются с длиной 165 (43 %), 167 (16 %) и 163 (14 %) п.н.

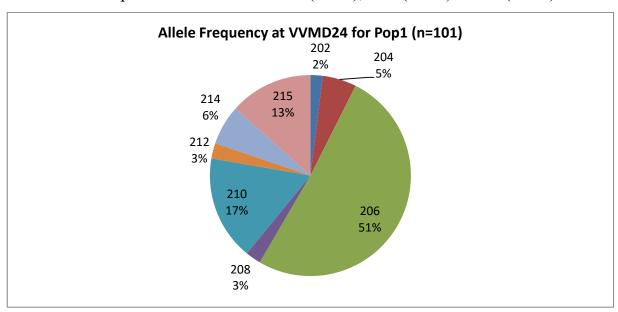


Рисунок 31 – Анализ частот встречаемости аллелей локуса VVMD24

Рисунок 31 демонстрирует количественный и качественных состав распределения аллелей локуса VVMD24. Всего было обнаружено 8 состояний, где наиболее часто встречались микросателлиты с длинами в 206 (51 %), 210 (17 %) и 215 (13 %) п.н.



Рисунок 32 – Анализ частот встречаемости аллелей локуса VVIV67

Диагармма, изображёная на рисунке 32, демонстрирует, что для локуса VVIV67 было обнаружено 29 состояний, из которых среди изученных генотипов наиболее часто представлены микросателлитные последовательности ДНК с длиной в 357 (25 %), 358 (10 %) и 376 (8 %) п.н.

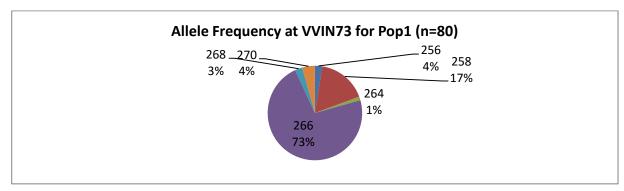


Рисунок 33 – Анализ частот встречаемости аллелей локуса VVIN73

Из рисунка 32 видно, что для локуса VVIN73, было обнаружено всего 6 аллелей. Наиболее часто встречающимися на диаграмме представлены микросателлиты с длиной 266 (73 %), 258 (17 %) и 270 (4 %) п.н.

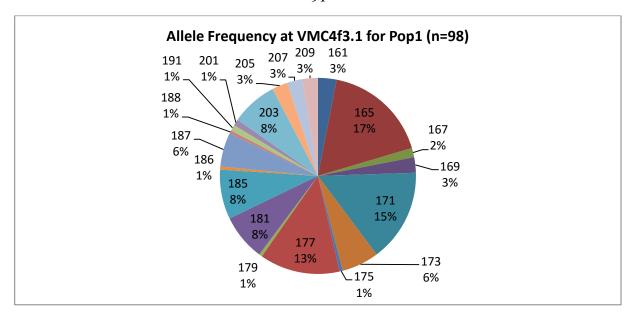


Рисунок 34 – Анализ частот встречаемости аллелей локуса VMC4f3.1

Из диаграммы, представленной на рисунке 34 видно, что наиболее часто встречаются микросателлиты длиной в 165 (17 %), 171 (15 %) и 177 (13 %) п.н. При этом, всего для локуса VMC4f3.1 было обнаружено 20 состояний.

Рисунок 35 – Анализ частот встречаемости аллелей локуса VVIN16

Рисунок 35 демонстрирует, что для локуса VVIN16 было обнаружено 8 аллельных состояний, из которых наиболее часто распространены гены длиной 149 (33 %), 153 (32 %) и 151 (28 %) п.н.

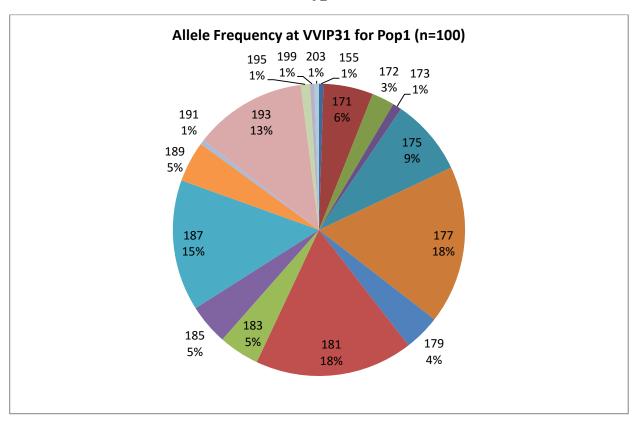


Рисунок 36 – Анализ частот встречаемости аллелей локуса VVIP31

Из рисунка 36 видно, что всего для локуса VVIP31 было обнаружено 17 состояний микросателлитных аллелей. Из них наиболее часто представлены гены длиной 181, 177 (18 %), 187 (15 %) и 193 (13 %) п.н. Как было указано выше, всего обнаружено 349 состояний для 25 локусов в 107 образцах. Тем не менее, из полученных в ходе анализа данных можно сделать вывод, что наиболее консервативными локусами были VVIN73 – 6 аллельных состояний, VrZag83 - 6, VVMD24 - 8, VVIN16 - 8 и VVIQ52 - 9, а наиболее полиморфными VVIV67 – 29, VVMD28 – 20, VMC4f3.1 – 20, VrZag67 – 19 и VVIV37 – 18. По данным, полученным в результате анализа с использованием большого набора микросателлитных маркеров, была проведена оценка степени генетического родства. Для кластеризации образцов был выбран метод «Одиночной связи» (Single linkage), с использованием программы DARwin 6. Дендрограмма (рисунок 37) демонстрирует расположение близкородственных аборигенных сортов дикорастущего По И винограда. результатам кластеризации сделаны выводы о родстве генотипов, описание которого приводится после древа.

3.1.6 Кластеризация аборигенных сортов винограда при помощи программы DARwin 6

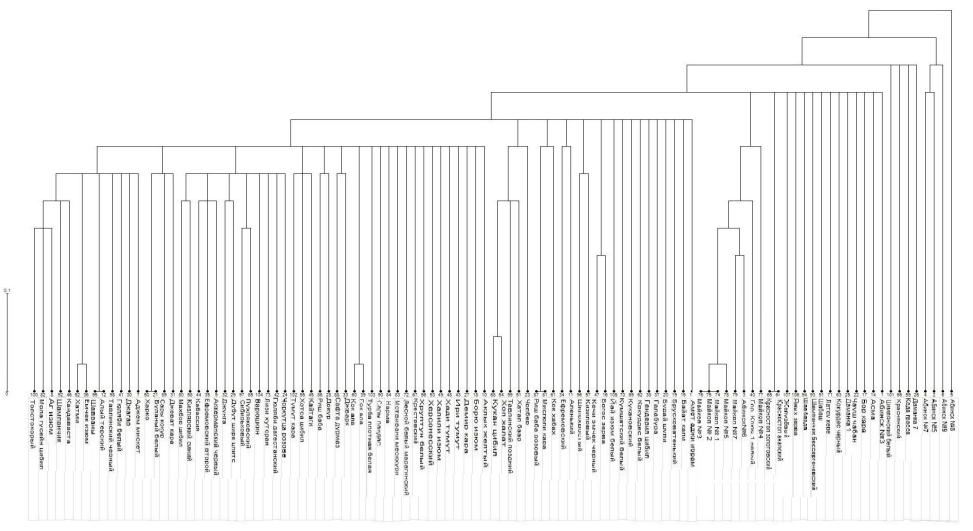


Рисунок 37 – Результаты кластеризации аборигенных сортов и дикорастущего винограда

Дикорастущие лозы Абинск № 3, Абинск № 5 и Абинск № 7, Абинск № 8 и Абинск № 9 произрастают в лесном массиве на берегу реки Кубань у поселка Нечаевский Абинского района. Эти лозы являются фенотипически схожими и напоминают по форме, рассеченности, опушению листовых пластинок и наличию листовых галлов сорт Кобера 5ББ и представляют собой, вероятнее всего, филлоксероустойчивые подвои. Лозы Абинск № 6, Гор. Ключ 1 новый и майкопские № 1-7, в общей кластерограмме образовали иерархические подкластеры генотипов в качестве центра дикорастущих лоз Vitis silvestris Gmel., что подтверждается соответствующими фотоиллюстрациями типичных листовых пластинок (приложение A, рисунки A1-A8). Рядом расположенный аборигенный донской черноягодный сорт Красностоп золотовский и его высокопродуктивный клон Красностоп анапский – свидетельство не только их генетической близкородственности, но и феногенетической близости с представителями Vitis silvestris. К этому подвиду мы относим также рядом расположенные родственные генотипы Даманка 7, Кода гросса, Краснянский и Цимлянский белый, причем последние два сорта являются донскими аборигенами. Субкластеры близкородственных сортов Богос зерва и Кечи эмчек черный, Кизиловый и Шилохвостый, Аленький и Ефремовский, Кок хабах и Мисгюли кара, Риш баба розовый, Хоп халат и Кукан цибил с Хатал баар и Тавлинским поздним с Чолбером объединены вместе как генотипы северо-кавказского происхождения, которые содержат в себе не только структурные гены Vitis silvestris, но и его эпигены. Сорт Кок ала – синоним дагестанского Гок ала. В кластерограмме взаимосвязанные сорта Джварк и Сафта дурмаз, Докур и Риш баба, Кайтаги, Хотса цибил и Тумут кара, Пухляковский и Сибирьковый, Дубут шире цпитс и Джунга, Аккерманский черный, Ефремовский второй и Кабассия, Кизлярский синий и Махбор цибил, Буланый белый, сорт Харко с Сары кокур и Джеват кара, Алый терский, сорт Шавраны, Эмчек изюм и Хатми, Аг изюм, Мола гусейн цибил и Толстокорый с Кандаваста и Шампанчиком оказались родственными по структуре ДНК.

Результаты кластеризации аборигенных сортов и дикорастущего винограда мы рекомендуем использовать в селекционной работе при подборе скрещиваемых пар. Для получения гибридов с наибольшей изменчивостью следует использовать сорта, вошедшие в разные кластеры и группы географического происхождения. Помимо этого данные, полученные в результате молекулярно-генетического маркирования коллекции, могут быть использованы для изучения генеалогии сортов и при возникновении спорных вопросов.

Наши результаты имеют практическое значение, так как выделенные высокопродуктивные клоны Пиногрик и Семядисятилетие Победы (приложения A и Б), отличаются от материнских форм улучшенными агробиологическими показателями (приложения C и D). Эти протоклоны представляют большой интерес для повышения продуктивности и экономической эффективности виноградных насаждений Краснодарского края, путём внедрения в промышленное виноградарство, фермерские хозяйства и приусадебное садоводство.

ЗАКЛЮЧЕНИЕ

С помощью молекулярно-генетического анализа подтверждена обоснованность отбора протоклонов. В процессе работы создана база данных о дикорастущем винограде Краснодарского края и Республики Адыгея и аборигенных сортах, сохраненных на АЗОС СКЗНИИСВиВ.

- 1. В результате анализа полиморфизма 6 микросателлитных маркеров в представленной выборке сортов и клонов винограда возделываемых на территории Краснодарского края выявлено от 15 до 27 аллелей на локус. Наиболее высоким уровнем изменчивости обладает локус VVMD7, а наиболее низким VrZag62. Всего было обнаружено 122 аллельных состояния по всем микросателлитным маркерам.
- 2. В изученной выборке клонов ожидаемая гетерозиготность для каждого локуса выше наблюдаемой, что говорит о низком уровне полиморфизма.
- 3. Молекулярно-генетическим маркированием и кластеризацией изученных генотипов подтверждено отличие сортов Пиногрик и Семидесятилетие Победы от материнских форм и остальных протоклонов.
- 4. Изучение полиморфизма 25 локусов в 107 образцах аборигенного и дикорастущего винограда выявило 349 состояний. При этом наибольший полиморфизм показал маркер VVIV67 (29 аллелей), а наименьший VrZag83 и VVIN73 (6 аллелей).
- 5. Для маркеров VrZag79, VrZag83, VVIN73, VVMD25, VVMD28 и VVS2 наблюдаемая гетерозиготность превышает ожидаемую, что указывает на высокую полиморфность данных микросателлитов в изученной группе генотипов.
- 6. На основании данных SSR-анализа для всех генотипов аборигенных сортов и дикорастущего винограда построены генетические карты, позволяющие идентифицировать их среди других сортов.
- 7. По данным ДНК-фингерпринтингов и кластеризации, среди изученных генотипов аборигенных сортов Северного Кавказа найдены синонимы: Гок ала и Кок ала, а среди дикорастущего винограда обнаружен *Vitis silvestris* Gmel.

ПРЕДЛОЖЕНИЯ ДЛЯ ПРАКТИЧЕСКОЙ СЕЛЕКЦИИ

Для повышения эффективности отбора клонов винограда и испытания их в государственной комиссии РФ рекомендуется:

- 1. Отобранные клоны (Пиногрик и Семидесятилетие Победы) использовать в практической селекции и внедрять в производство для повышения эффективности и продуктивности насаждений виноградников Краснодарского края.
- 2. Активно использовать в качестве селекционного материала исследованные аборигенные сорта для раскрытия их потенциала как ценных носителей генов устойчивости к вредителям, болезням и общей адаптивности к условиям Северного Кавказа.
- 3. Все отобранные протоклоны проанализировать методами ISSR, REMAP и IRAP для расширения познания о структуре строения их ДНК.
- 4. Дикорастущий виноград Краснодарского края и Республики Адыгея передать на сохранение в коллекцию гермплазмы АЗОС СКНИИСВиВ.

СПИСОК ЛИТЕРАТУРЫ

- 1. Айвазян, П. К. Селекция виноградной лозы / П. К. Айвазян, Е. Н. Докучаева. – Киев: Изд-во Украинской академии с.-х. наук, 1960. – С. 288–296.
- 2. Альбертс, Б., Молекулярная биология клетки. В 3т. / Б. Альбертс, Д. Брей, Дж. Льюис. М.: Мир, 1994. 517 с.
- 3. Барышева, И. А. Исследование внутрисортовой изменчивости ДНК винограда ПДРФ и ПЦР методами / И. А. Барышева, М. И. Тулаева, В. С. Чисников // Цитология и генетика. 2003. Т. 37, № 6. С. 31–38.
- 4. Беспалова, Л. А. Фотопериодическая чувствительность и молекулярное маркирование генов PPD и VRN в связи с селекцией сортов пшеницы альтернативного образа жизни / Л. А. Беспалова, В. А. Кошкин, Е. К. Потокина // Доклады Российской академии сельскохозяйственных наук. М.: Доклады РАСХН, 2010. № 6. С. 3—6.
- 5. Бороевич, С. А. Принципы и методы селекции растений /С. А. Бороевич. М.: Колос, 1984. 344 с.
- 6. Вавилов Н. И. Генетика и селекция. Избр. соч. / Н. И. Вавилов. М. : Колос, 1966. – 560 с.
- 7. Виноград. Всё о винограде [Электронный ресурс] / ред. В. Ю. Буря; Web-мастер В. Ю. Буря. Электрон. дан. Краснодар, 2012. Режим доступа: http://vinograd.info
- 8. Волынкин, В. А. Триединство генетики, ампелографии и физиологии в современной селекции винограда / В. А. Волынкин, В. А. Зленко, Н. П. Олейников // Интерактивная ампелография. Краснодар, 2012. С. 14–30.
- 9. Гераськин, С. А. Биологический контроль окружающей среды: генетический мониторинг: учеб. пособие / С. А. Гераськин, Е. И. Сарапульцева, Л. В. Цаценко /под ред. С. А. Гераськина, Е. И. Сарапульцевой. М.: Академия, 2010. 208 с.

- Голодрига, П. Я. Понятие «клон» в виноградарстве / П. Я. Голодрига // Садоводство, виноградарство и виноделие Молдавии. – 1972. – № 11. – С. 28–29.
- 11. Грамотенко, П. М. Клоновая селекция как метод повышения урожайности сортов винограда /П. М. Грамотенко // Сорт в виноградарстве. 1962. N_{\odot} 4. С. 214—221.
- 12. Дивашук, М. Г. Идентичность генов короткостебельности RHT-11 И RHT-B1E / М. Г. Дивашук, А. В. Васильев, Л. А. Беспалова // Генетика. 2012. № 7. С. 897.
- 13. Дорошенко, Н. П. Физиологическое обоснование применение препарата «Эмистим» при клональном микроразмножении винограда / Н. П. Дорошенко // Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2010. № 58(04). Режим доступа: http://ej.kubagro.ru/2010/04/pdf/32.pdf
- 14. Драгович, А. Ю. Сопоставление двух существующих каталогов аллелей глиадинкодирующих локусов у озимой мягкой пшеницы / А. Ю. Драгович,
 В. Г. Зима, А. В. Фисенко // Генетика. 2006. Т. 42, № 8. С. 1107–1116.
- 15. Драновский, В. А., Трошин Л. П. Массовая и фитосанитарная селекция необходимость современного виноградарства / В. А. Драновский, Л. П. Трошин // Виноград и вино России. 1995. № 4. С. 20—23.
- 16. Еремин, Г. В. Размножение клоновых подвоев персика / Г. В. Еремин, В. Г. Еремин //Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2010. № 62(08). Режим доступа: http://ej.kubagro.ru/2010/08/pdf/08.pdf
- 17. Звягин, А. С. Выделение ДНК из гербарных листьев *Vitis vinifera* L. / А. С. Звягин // Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2010. № 58(04). Режим доступа: http://ej.kubagro.ru/2010/04/pdf/22.pdf

- 18. Звягин, А. С. Технология отбора клонов винограда с использованием молекулярных маркеров /А. С. Звягин //Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2011. № 68(04). Режим доступа: http://ej.kubagro.ru/2011/04/pdf/14.pdf
- 19. Звягин, А. С. Выделение ДНК из листьев *Vitis vinifera* L. / А. С. Звягин, Л. П. Трошин // Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2010. № 60(06). Режим доступа: http://ej.kubagro.ru/2010/06/pdf/36.pdf
- 20. Звягин, А. С. Исследование аборигенных сортов винограда России с использованием микросателлитных маркеров / А. С. Звягин, А. В. Милованов, Л. П. Трошин // Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2013. № 88(04). Режим доступа: http://ej.kubagro.ru/2013/04/pdf/13.pdf
- 21. Звягин, А. С. Исследование гаплотипного разнообразия аборигенных сортов России / А. С. Звягин, Л. П. Трошин // Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2010. № 61(07). Режим доступа: http://ej.kubagro.ru/2010/07/pdf/33.pdf
- 22. Звягин, А. С. Исследование дикого винограда *Vitis silvestris* Gmel. на Северном Кавказе / А. С. Звягин, Л. П. Трошин // Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2010. № 58(04). Режим доступа: http://ej. kubagro.ru/2010/04/pdf/21.pdf
- 23. Зеленский, Г. Л. Борьба с пирикуляриозом риса путем создания устойчивых сортов / Г. Л. Зеленский // Политематический сетевой электронный

- научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2013. № 85(01). Режим доступа: http://ej.kubagro.ru/2013/01/pdf/48.pdf
- 24. Зеленский, Г. Л. Изучение биоразнообразия сорных растений рода Echinochloa на территории Краснодарского края на основе морфологического и молекулярно-генетического подходов / Г. Л. Зеленский // Тр. КубГАУ. 2008. № 11. С. 110–114.
- 25. Зеленский, Г. Л. Новый исходный материал для селекции риса на повышение продуктивности/ Г. Л. Зеленский, М. В. Шаталова // Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2013. № 89(05). Режим доступа: http://ej.kubagro.ru/2013/05/pdf/60.pdf
- 26. Зотов, В. В. Улучшить стандартные сорта винограда методом отбора / В. В.Зотов // Виноделие и виноградарство СССР. 1956. № 8. С. 31–35.
- 27. Калайджян, А. А. Российский солнечный цветок / А. А. Калайджян, Л. В. Хлевной, Н. Н. Нещадим / под ред. В. М. Пенчукова. Краснодар : Совет. Кубань, 2007. 351 с.
- 28. Кискин, П. X. Филлоксера / П. X. Кискин–Кишинев: Штиинца, 1977. 211 с.
- 29. Клочнева, В. И. Идентификация видов, сортов и клонов винограда по белкам как маркерам генов / В. И. Клочнева, Л. П. Трошин, А. В. Шурхал. М.: Типография ВАСХНИЛ, 1990. 35с.
- 30. Клочнева, В. И. Межвидовая и внутривидовая изменчивость винограда по аллозимным локусам / В. И. Клочнева, Л. П. Трошин, А. В. Шурхал // Науч. тр. ВНИИВиПП «Магарач». -1989. -№ 9. C. 109-114.
- 31. Коваленко, Н. Н. Стимуляторы корнеобразования и их влияние на укоренение зеленых черенков клоновых подвоев плодовых культур. / Н. Н. Коваленко, А. П. Кузнецова // Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. —

- Краснодар: КубГАУ, 2011. № 73(09). Режим доступа: http://ej.kubagro.ru/2011/09/pdf/26.pdf
- 32. Козаченко, Д. М. Клоновая и санитарная селекция винограда и некоторые элементы питомниководства во Франции /Д. М. Козаченко // Виноград и вино России. 1997. № 6. C. 56-58.
- 33. Лукомец, В. М. Цитологический скрининг мужского гаметофита линий подсолнечника, устойчивых к имидазолиновым гербицидам / В. М. Лукомец, Н. И. Бочкарев, Л. В. Цаценко // Тр. КубГАУ. 2012. № 35. С. 117–122.
- 34. Лукомец, В. М. Селекционно-генетическое улучшение сои на юге европейской части России (обзор). Масличные культуры / В. М. Лукомец, А. В. Кочегура, С. В. Зеленцов // Научно-технический бюллетень Всероссийского научно–исследовательского института масличных культур. 2012. № 2 (151–152). С. 207–210.
- 35. Медведева, Н. И. Методические рекомендации по микроклональному In Vitro Н. И. Медведева, размножению винограда / Н. В. Поливара, Л. П. Трошин // Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. – Краснодар: КубГАУ, 2010. № 62(08). Режим доступа: http://ej.kubagro.ru/2010/08/pdf/31.pdf
- 36. Медведева, Н. И. Особенности микроклонального размножения интродуцентов и клонов винограда / Н. И. Медведева, Н. В. Поливара, Л. П. Трошин // Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2008. № 40(6). Режим доступа: http://ej.kubagro.ru/2008/06/pdf/18.pdf
- 37. Мержаниан, А. С. Селекция в виноградарстве / А. С. Мержаниан. Ростов-на-Дону: Изд. Северо-Кавказского винного треста, 1928. 54 с.
- 38. Милованов, А. В. Генотипирование новых перспективных технических протоклонов винограда с использованием микросателлитных маркеров/

- А. В. Милованов, А. С. Звягин, Л. П. Трошин // Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2014. № 98(04). Режим доступа: http://ej.kubagro.ru/2014/04/pdf/10.pdf
- 39. Милованов, А. В. Генотипирование продуктивных протоклонов трех технических сортов винограда с использованием микросателлитных маркеров / А. В. Милованов, А. С. Звягин, Л. П. Трошин // Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2014. № 98(04). Режим доступа: http://ej.kubagro.ru/2014/04/pdf/77.pdf
- 40. Милованов, А. В. Выделение ДНК при помощи PeqGOLD PLANT DNA mini KIT /А. В. Милованов, Л. П. Трошин // Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2013. № 90(06). Режим доступа: http://ej.kubagro.ru/2013/06/pdf/11.pdf
- 41. Милованов, А. В. Генотипирование сортов винограда по молекулярным маркерам /А. В. Милованов, Л. П. Трошин // Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2014. № 96(02). Режим доступа: http://ej.kubagro.ru/2014/02/pdf/05.pdf
- 42. Мухина, Ж. М. Молекулярные маркеры и их исользование в селекционно-генетических исследованиях/ Ж. М. Мухина, Е. В. Дубина // Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2011. № 66(02). Режим доступа: http://ej.kubagro.ru/2011/02/pdf/09.pdf
- 43. Мухина, Ж. М. Изучение биоразнообразия возбудителя пирикуляриоза риса молекулярно-генетическими методами / Ж. М. Мухина, С. А. Волкова, Т. М. Коломиец, В. В. Тюрин // Тр. КубГАУ. 2008. № 5(14). С. 107–110.
- 44. Мухина, Ж. М. Создание внутригенных молекулярных маркеров риса для повышения эффективности селекционного и семеноводческого процессов /

- Ж. М. Мухина, С. В. Токмаков, Ю. А. Мягких // Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2011. № 67(03). Режим доступа: http://ej.kubagro.ru/2011/03/pdf/19.pdf
- 45. Негруль, А. М. Большое внимание клоновой селекции винограда / А. М. Негруль // Виноделие и виноградарство СССР. 1956. № 8. С. 37–39.
- 46. Нещадим, Н. Н. Регуляторы роста растений и факторы физического воздействия при возделывании сельскохозяйственных культур в условиях Кубани: автореф. дис. ...д-ра с.-х. наук. Краснодар, 1997. 50 с.
- 47. Овчинников, Ю. А. Биоорганическая химия. М.: «Просвещение», 1987.-816 с.
- 48. Остерман, Л. А. Методы исследования нуклеиновых кислот. М.: Наука, 1981. – 288с.
- 49. Панарина, А. М. Изучение изменчивости признаков листа с целью выявления их ценности для ампелографических исследований // Науч. тр. института «Магарач». 1967. Т. 16. С. 167–182.
- 50. Подваленко, П. П. Клоновая селекция современная основа подъема продуктивности виноградников / П. П. Подваленко, А. С. Звягин, Л. П. Трошин // Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2009. № 51(7). Режим доступа: http://ej.kubagro.ru/2009/07/pdf/19.pdf
- 51. Романенко, А. А. Селекция зерновых культур на устойчивость к абиотическим стрессорам /А. А. Романенко, Н. Ф. Лавренчук // Вестник РСАХН. − 2011. № 1. C. 17-21.
- 52. Романенко, А. А. Селекция гибридов кукурузы в Краснодарском НИИСХ / А. А. Романенко, А. И. Супрунов // Земледелие. 2011. № 2. С. 41–42.
- 53. Сайт компании ЗАО «Синтол» [Электронный ресурс] / ЗАО «Синтол»; ред. М. В. Шумских; Web-мастер М. В. Шумских. Электрон. дан. М.: Web-студия Матадор, 2011. Режим доступа: http://www.syntol.ru/productgmo.html

- 54. Супрун, И. И. Апробация микросателлитных ДНК-маркеров для идентификации клоновых форм сортов яблони / И. И. Супрун, С. Н. Артюх, С. В. Токмаков // Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2012. № 84(10). Режим доступа: http://ej.kubagro.ru/2012/10/pdf/21.pdf
- 55. Супрун, И. И. Создание селекционных форм риса, несущих ген широкого спектра устойчивости к пирикуляриозу Pi-40, с использование методов ДНК-маркирования / И. И. Супрун, В. С. Ковалев, В. Н. Шиловский // Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2013. № 86(02). Режим доступа: http://ej.kubagro.ru/2013/02/pdf/18.pdf
- 56. Трошин, Л. П. Анализ наследственной информации винограда // Виноград и вино России. 1997. № 1. С. 17—19.
- 57. Трошин, Л. П. Методология клоновой селекции винограда / Л. П. Трошин // Юбилейный тематический сборник научных трудов. Часть 2. Виноградарство. Краснодар, 2001. С. 92–94.
- 58. Трошин, Л. П. О значении метода клоновой селекции винограда, разработанного профессором А. С. Мержанианом / Л. П. Трошин // Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2010. № 57(03). Режим доступа: http://ej.kubagro.ru/2010/03/pdf/16.pdf
- 59. Трошин, Л. П. Использование биометрической оценки морфологических признаков клонов для идентификации генотипов сортогрупп Мерло /Л. П. Трошин, А. С. Звягин // Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2008. № 38(4) Режим доступа: http://ej.kubagro.ru/2008/04/pdf/10.pdf

- 60. Трошин, Л. П. Новации виноградарства России. 4. Совершенствование клоновой селекции винограда / Л. П. Трошин, А. С. Звягин // Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2009. № 54(10). Режим доступа: http://ej.kubagro.ru/2009/10/pdf/09.pdf
- 61. Трошин, Л. П. Биометрическая оценка полиморфизма сортогрупп винограда Пино и Рислинг по морфологическим признакам листьев средного яруса кроны / Л. П. Трошин, Е. В. Луценко, П. П. Подваленко // Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснода: КубГАУ, 2009. № 52(8). Режим доступа: http://ej.kubagro.ru/2009/08/pdf/01.pdf
- 62. Трошин, Л. П. Идентификация и генотипирование зародышевой плазмы трех столовых сортов винограда / Л. П. Трошин, А. В. Милованов, Б. А. Маховицкий // Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2013. № 90(06). Режим доступа: http://ej.kubagro.ru/2013/06/pdf/49.pdf
- 63. Трошин, Л. П. Три сибса современного приватного виноградарства России и Украины / Л. П. Трошин, А. В. Милованов, Б. А. Маховицкий // Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2013. № 89(05). Режим доступа: http://ej.kubagro.ru/2013/05/pdf/32.pdf
- 64. Трошин, Л. П. Оценка таксономических отношений сортов V. v. s. p. *balcanica* Negr. и V. v. s. p. *meridionali-balcanica* Trosh. по морфометрическим признакам листа / Л. П. Трошин, А. А. Полулях, В. И. Рисованная // Виноград и вино России. − 1998. − № 3. − С. 41–42.
- 65. Трошин, Л. П. Районированные сорта винограда России / Л. П. Трошин, П. П. Радчевский. Краснодар: ООО «Вольные мастера», 2004. 176 с.

- 66. Трошин, Л. П. Сортимент винограда России / Л. П. Трошин, П. П. Радчевский // Виноделие и виноградарство. 2001. № 3. С. 24—25.
- 67. Трошин, Л. П. Изменчивость признаков листа сортов винограда *Vitis vinifera pontica balcanica* Negr. / Л. П. Трошин, В. И. Рисованная, А. А. Полулях // Виноградарство и виноделие. -1996. № 1. С. 15—20.
- 68. Трошин, Л. П. Ампелографические признаки в изучении таксономических отношений сортов *Vitis vinifera sativa pontica* Negr. / Л. П. Трошин, В. И. Рисованная, А. И. Полулях // Труды Научного центра виноградарства и виноделия. 1999. С. 10–12.
- 69. Трошин, Л. П. Статистический анализ количественных признаков популяции винограда сорта Рислинг / Л. П. Трошин, И. А. Суятинов, М. А. Чупраков // Пути совершенствования питомниководства и селекционного процесса в виноградарстве. тр. ВНИИВиПП «Магарач». – Ялта, 1986. – Т. 24. – С. 77–86.
- 70. Трошин, Л. П. Ампелографическая и селекционная научно-исследовательская работа Кубанского госагроуниверситета / Л. П. Трошин // Политематический сетевой электронный научный журнал КубГАУ (Научный журнал КубГАУ) [Электронный ресурс]. Краснодар: КубГАУ, 2012. № 07 (081). Режим доступа: http://ej.kubagro.ru/2012/07/pdf/39.pdf
- 71. Трошин, Л. П. Виноград: иллюстрированный каталог. Районированные, перспективные, тиражные сорта / Л. П. Трошин, П. П. Радчевский. Ростов-на-Дону: Феникс, 2010. 271 с.
- 72. Хилько, В. Ф. Методические основы клоновой селекции сортов винограда / В. Ф. Хилько //тр. Науч. центра виноградарства и виноделия. Ялта, 1998. Т. 1. С. 22–27.
- 73. Цаценко, Л. В. Цитология: учеб. пособие / Л. В. Цаценко, Ю. С. Бойко. Краснодар: КубГАУ, 2007. 27 с.

- 74. Цаценко, Л. В. Молекулярная биология: учеб. пособие / Л. В. Цаценко, Ю. С. Бойко, Д. В. Крутенко. Краснодар: КубГАУ, 2007. С. 14–15.
- 75. Цаценко, Л. В. Методология научной агрономии: курс лекций / Л. В. Цаценко, Н. А. Щербаков. –Краснодар: КубГАУ, 2012. С. 10–11.
- 76. Цейтлин, М. Г. Клоновая селекция винограда в Узбекской ССР / М. Г. Цейтлин // Виноделие и виноградарство СССР. 1947. № 9. С. 35—36.
- 77. Abubakkar M., Khan A., Cheema H. Extraction of DNA suitable for PCR applications from mature leaves of *Mangifera indica* L. // Journal of Zhejiang University. 2012. Vol. 13. P. 239–243.
- 78. Ajitpal S., Krishan K., Manav I., Gill I. Genotype identification and inference of genetic relatedness among different purpose grape varieties and rootstocks using microsatellite markers // African Journal of Biotechnology. 2013. Vol. 12. P. 134–141.
- 79. Atak A., Altindisli A., Fuat A. Molecular and ampelographic characterization of some grape hybrids (Vitis vinifera L.) // African Journal of Agricultural Research. 2012. Vol. 7. P. 456–466.
- 80. Audeguin L., Boidron R., Bloy P. L'experimtntation des clones des de vigne en France. Etat des lilex, metohodologie et perspectives // XXIV Weltkongress fur Rebe und Wein. 1997. Vol. 10. –P. 42–52.
- 81. Azuma A., Kobayashi S., Yakushiji H. VvmybA1 genotype determines grape skin color // Vitis. 2007. Vol. 46. P.154–155.
- 82. Balthazard J., Huglin P. Clonal selection and gene pool preservation of traditional grape cultivars // Proceedings of the Third International symposium on grape breeding. 1980. P. 63–64.
- 83. Belic Z. Genetic characterization and relationships of traditional grape cultivars from Serbia // Vitis. 2012. Vol.51. P. 183–189.
- 84. Benjak A., Forneck A., Casacuberta J. Genome-wide analysis of the «Cutand-Paste» transposons of grapevine // PLoS ONE. 2008. Vol. 3. P. 9–10.

- 85. Bodor P., Bisztray G., Pedryc A. The separation of grapevine (*Vitis vinifera* L.) Conculta members with molecular markers // Proceedings of International Ph. D. Students Conference. Brno. 2008. P.118–123.
- 86. Bogs J., Jaffe F., Takos A. The Grapevine Transcription Factor VvMYBPA1 Regulates Proanthocyanidin Synthesis during Fruit Development // Plant Physiology. 2007. Vol. 143. P. 1347–1361.
- 87. Bowers J. E., Dangl G. S., Meredith C. P. Development and characterization of additional microsatellite DNA markers for grape // American Journal of Enology and Viticulture. 1997. Vol. 50. P. 243–246.
- 88. Bowers J. E., Dangl G. S., Vignani R., Meredith C. P. Isolation and characterization of new polymorphic simple sequence repeat loci in grape (*Vitis vinifera* L.) // Genome. 1996. Vol. 39. P. 628–633.
- 89. Cadle-Davidson M., Owens C. Radiation of the grape retroelement (GRET1) in Vitis spp. of the grapevine germplasm repository // Grape Genetics Research. 2007. Vol. 10. P. 24.
- 90. Caetano-Anollks G., Gresshoff P. Fast and sensitive silver staining of DNA in polyacrylamide gels // Analyt. Bioch. 1991. Vol. 15. P. 80–83.
- 91. Carcamo C., Provedo I., Arroyo-Garcha R. Detection of polymorphism in ancient Tempranillo clones using microsatellite and retrotransposon markers // Iranian Journal of Biotechnology. 2010. Vol. 8. Р. 73–75.
- 92. Carputo D., Frusciante L., Santoro X. Use of SSR and retrotransposon—based markers to interpret the population structure of native grapevines from southern Italy CliziaVillano // Springer Science. 2014. Vol. 131. P. 245–250.
- 93. Choudhary K., Mathur N., Choudhary O. Protocol for isolation of genomic DNA from dry and fresh leaves of vigna species suitable for RAPD and restriction digestion // Adv. in Biological Research. 2008. Vol. 2. P. 83–89.
- 94. D'Onofrio C., De Lorenzis G., Giordani T. Retrotransposon—based molecular markers for grapevine species and cultivars identification // Tree Genetics & Genomes. 2010. Vol. 6. P. 451–466.

- 95. DARwin 6 online manual [Электронный ресурс] / DARwin software website; Web-мастер Cirad. 2014. Режим доступа: http://darwin.cirad.fr/Files/DocDarwin6.pdf
- 96. DARwin 6 website [Электронный ресурс] / DARwin software website; Web-мастер Cirad. 2014. Режим доступа: http://darwin.cirad.fr/
- 97. Derent X., Deling W., Guoliang Z. Clonal selection of grapes // Acta Hortic. Sin.—1991. Vol. 18 (2).—P. 121–125.
- 98. Fatahi R., Ebadi A., Bassil N. Characterization of Iranian grapevine cultivars using microsatellite markers // Vitis. № 42 (4). 2003. P. 185–192.
- 99. GenAlEx 6.5 website [Электронный ресурс] / The Australian National University; ред. P. Smouse; Web-мастер R. Peakall. Электрон. дан. Canberra: The Australian National University, 2006. Режимдоступа: http://biology-assets.anu.edu.au/GenAlEx/Welcome.html
- 100. Gil J., Angeles C., Laurena A. Extraction of genomic DNA from the lipid–polysaccharide– and polyphenol rich coconut (Cocos nucifera L.) // Plant Molecular Biology Reporter. 2005. Vol. 23. P.297–297.
- 101. Ginwal H. S., Mittal N. An efficient genomic DNA isolation protocol for RAPD and SSR analysis in *Acorus calamus* L. // Journal of Biotechnology. 2010. Vol. 9. P. 213–216.
- 102. Huglin P., Guillot R., Valat C. L'Evaluation genetique et sanitaire du materiel clonal de la vigne // Bull. O. I. V. 1980. Vol. 53. P. 857–882.
- 103. Ibrahim R. A modified CTAB protocol for DNA extraction from young flower petals of some medicinal plant species // Geneconserve. 2011. № 10(40). P. 165–182.
- 104. Kalendar R. The Use of Retrotransposon–Based molecular markers to analyze genetic diversity // Field Veg. Crop Res. 2011. Vol. 48. P. 261–274.
- 105. Kalendar R., Antonius K., Smýkal P. iPBS: a universal method for DNA fingerprinting and retrotransposon isolation // Theor. Appl. Genet. 2010. Vol. 121. P. 1419–1430.

- 106. Kalendar R., Flavell A. Analysis of plant diversity with retrotransposon–based molecular markers // Heredity. 2011. Vol. 106. P. 520–530.
- 107. Kalendar R., Grob T., Regina M. IRAP and REMAP: two new retrotrans-poson-based DNA fingerprinting techniques // Theor. Appl. Genet. 1998. Vol. 109. P. 704–711.
- 108. Kalendar R., Schulman A. IRAP and REMAP for retrotransposon—based genotyping and fingerprinting // Nature Protocols. 2006. Vol. 11. P. 2478–2484
- 109. Kang H. A rapid DNA extraction method for RFLP and PCR analysis from a single dry seed // Plant. Mol. Biol. 1998. Vol. 16. P. 90.
- 110. Karp A., Edwards K. Molecular techniques for biodiversity evaluation: Opportunities and challenges // Nat. Biotech. 1997. Vol. 15. P. 625–628.
- 111. Karp A., Ingram. D. S., Isaac P. Molecular tools for screening biodiversity // Chapman and Hall. 1998. Vol. 114. P. 195–201.
- 112. Ketan P., Easty D., Dunn M. Detection of Proteins in Polyacrylamide Gels Using an Ultrasensitive Silver Staining Technique // Methods in Molecular Biology. 1988. Vol.3. P. 159–168.
- 113. Kobayashi S., Goto-Yamamoto N., Hirochika H. Retrotransposon—induced mutations in grape skin color // Science. 2004. Vol. 304. P. 982.
- 114. Krizamn M., Jakse J., Baricevic D. Robust CTAB-activated charcoal protocol for plant DNA extraction // Agriculturae Slovenica. 2006. Vol. 87. P. 427–433.
- 115. Kurata N. Physical mapping of the rice genome with YAC clones // Plant. Mol. Biol. 1997. Vol. 35. P. 101–113
- 116. Lagercrantz U., Ellengren H., Andersson L. The abundance of various polymorphic microsatellite motifs differs between plant and vertebrates // Nucleic Acids Res. 1993. Vol. 21. P. 1111–1115.
- 117. Lahogue F., This P. and Bouquet A. Identification of a codominant SCAR marker linked to seedlessness character in grapevine // Theor. Appl. Genet. 1998. Vol. 97. P. 950–959.

- 118. Lamboy W. F., Alpha C. G. Using simple sequence repeats (SSRs) for DNA fingerprinting germplasm accessions of grape (Vitis L.) species // J. Am. Soc. Hort. Sci. 1998. Vol. 123. P. 182–188.
- 119. Lefort F., Roubelakis-Angelakis K. A. Genetic comparison of greek cultivars of *Vitis vinifera* L. by nuclear microsatellite profiling // Am. J. Enol. Vitic. 2001. Vol. 52. P. 101–108.
- 120. Lefort F., Anzidei M., Roubelakis-Angelakis K. A. Characterization of grapevine with universal chloroplast microsatellite markers, 6th Intern. Symposium on Grapevine Physiology and Biotechnology // Book of abstracts. 2000. P. 200.
- 121. Lefort F., Anzidei M., Vendramin G. G. Microsatellite profiling of the Greek Muscat cultivars with nuclear and chloroplast SSRs markers // Queering della Scuola di Specializzazione in Scienze Viticole ed Enologiche. 2000. Vol. 23. P. 56–80.
- 122. Lefort F., Risovannaya V., Gorislavets S. Genetic profiling of Moldavian, Crimean and Russian cultivars of Vitis Vinifera with nuclear microsatellite markers // Геном Растений: сборник тезисов IV Международной конференции. Одесса, 2003. Р. 25.
- 123. Lemke L., Rex M., Zyprian E. A simple, inexpensive and environmentally friendly method for hight hrough put DNA extraction from grapevine (*Vitis* spp.) // Vitis. 2011. Vol. 14. P. 4–6.
- 124. Liao X. R., Zhu X. C., He P. C. Application of seed protein components in cluster analysis of Chinese Vitis plants // J. Hort. Sci. 1997. Vol. 72. P. 109–115.
- 125. Life technologies company [Электронный ресурс] / Thermo Fisher Scientific Inc. Электрон. дан. Waltham: Thermo Fisher Scientific Inc., 2011. Режим доступа: http://www.lifetechnologies.com
- 126. Ligia G. Assessment of diversity in grapevine gene pools from Romania and Republic of Moldova, based on SSR markers analysis // Horticulture. 2012. Vol. 56. P. 172.

- 127. Litt M., Luty J. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene // Am. J. Hum. Genet. 1989. Vol. 44. P. 388–396.
- 128. Lopes M. S., Sefc K. M., Eiras D. E. The use of microsatellites for germplasm management in a Portuguese grapevine collection // Theor. Appl. Genet. 1998. Vol. 99. P. 733–799.
- 129. Loureiro M. D., Moreno-Sanz P., Suarez B. Clonal preselection of grape-vine cultivars of the appellation «Cangas Quality Wine» // Hort. Sci. 2011. Vol. 38. P. 71–80.
- 130. Ma Z. Q., Roder M., Sorrells M. E. Frequencies and sequence characteristics of dinucleotide, trinucleotide, and tetra-nucleotide microsatellites in wheat // Genome. 1996. Vol. 39. P. 123–130.
- 131. Maletic E., Sefc K. M., Steinkellner H. Genetic characterization of Croatian grapevine cultivars and detection of synonymous cultivars in neighboring region // Vitis. 1999. Vol. 38. P. 79–83.
- 132. Manninen O., Kalendar R., Robinson J. Application of BARE1 retrotransposon markers to the mapping of a major resistance gene for net blotch in barley // Mol. Gen. Genet. 2000. Vol. 264. P. 325–334.
- 133. Maras V., Tomic M., Kodzulovic V. Research of origin and work on clonal selection of Montenigrin grapevine varieties Vranac and Kratosija // Agroznanje. 2012. Vol. 13. P. 103–112.
- 134. Maria S., Frisinghelli C. Grape microsatellite markers: Sizing of DNA alleles and genotype analysis of some grapevine cultivars // Vitis. 1998. Vol. 37. P. 79–82.
- 135. Martinez-Zapater J. M., Cabezas J. A., Cervera M. T. AFLPs in genetic identification and genome analysis of grapevines // Acta Hort. 2000. Vol. 52. P. 105–111.

- 136. Moisy C., Schulman A., Kalendar R. The Tvv1 retrotransposon family is conserved between plant genomes separated by over 100 million years // Theor. Appl. Genet. 2014. Vol. 127. P. 1223–1235.
- 137. Muhammad L., Guang-Ning Y., Norman F. A simple and efficient method for DNA extraction from grapevine cultivars, *Vitis* species and *Ampelopsis* // Plant Molecular Biology Reporter. − 1994. − № 12(1). − P. 6–13.
- 138. Natasa S. Microsatellite inferred genetic diversity and structure of Western Balkan grapewines (*Vitis vinifera* L.). Tree Genetics amd Genomics. 2014. Vol. 10. P. 127–140.
- 139. National Center for Biotechnology Information [Электронный ресурс] / National Center for Biotechnology Information.— Электрон. дан. Rockville Pick: U. S. National Library of Medicine, 2011. Режим доступа: www.ncbi.nlm.nih.gov/
- 140. Pejic I., Maletic E. Conservation, evaluation and revitalization of native grapevine varieties in Croatia // Mitteilungen Klosterneuburg. 2010. Vol. 60. P. 363–368.
- 141. PeqLab company [Электронный ресурс] / VWR Company; Web-мастер VWR International GmbH. Электрон. дан. Erlangen: Life Science Competence Center, 2011. Режим доступа: http://www.peqlab.com/wcms/en/index.php
- 142. PeqLab kit manual [Электронный ресурс] / VWR Company; Web-мастерVWR International GmbH. Электрон. дан. Erlangen: Life Science Competence Center, 2011. Режим доступа: http://www.peqlab.co.uk/wcms/uk/products/index.php?do=getArticleDetails&which= 12–3486–03
- 143. Puchooa D. A simple, rapid and efficient method for the extraction of genomic DNA from lychee // African Journal of Biotechnology. 2004. Vol. 3.–P. 253–255.

- 144. Randall K., David H., Susanne S. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase // Science. 1988. Vol. 29. P. 487–491.
- 145. Regner F., Hack R., Santiago J. L. Highly variable Vitis microsatellite loci for the identification of Pinot Noir clones // Vitis. 2006. Vol. 45. P. 85–91.
- 146. Regner F., Sefc K., Stadlbauer A. Genetic markers for the identification of varieties and clones as a guarantee of quality // Acta Horticulturae. 1998. Vol. 473. P. 49–61.
- 147. Regner F., Stadlbauer A., Eisenheld C. Molecular markers for genotyping grapevine and for identifying clones of traditional varieties // Acta Horticulturae.— 2000. Vol. 546. P. 51–55.
- 148. Reich B. I. Molecular markers: The foundation for grapevine genetic mapping, DNA fingerprinting and genomics // Proc. 7th Intern. Symp. Grapevine Genetics and Breeding. Lisboa. 1998. P. 56.
- 149. Rossetto M., Mcnally J. and Henry R. J. Evaluating the potential of SSR flanking regions for examining taxonomic relationships in the Vitaceae // Theor. Appl. Genet. 2002. Vol. 104. P. 61–66.
- 150. Rusjan D. Genetic and Phenotypic Diversity and Relations Between Grapevine Varieties: Slovenian Germplasm // The Mediterranean Genetic Code Grapevine and Olive. 2013. Vol. 3. P. 147–176.
- 151. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain–terminating inhibitors // Proc. Natl. Acad. Sci. USA. 1977. Vol. 12. P. 563–567.
- 152. Sant'Ana G. C., Ferreira J. L., Rocha H. S. Comparison of a retrotransposon-based marker with microsatellite markers for discriminating accessions of Vitis vinifera // Genetics and Molecular Research. 2012. Vol. 11. P. 1507–1525.
- 153. Schulman A., Flavell A., Paux E. The Application of LTR Retrotransposons as Molecular Markers in Plants // Methods in Molecular Biology. 2012. Vol. 59. P. 115–153.

- 154. Sefc K. M., Regner F., Tureschek E. Identification of microsatellite sequences in Vitis riparia and their application for genotyping of different Vitis species // Genome. 1998. Vol. 42. P. 367–373.
- 155. Shahzadi I., Ahmed R., Hassan A. Optimization of DNA extraction from seeds and fresh leaf tissues of wild marigold (Tagetes minuta) for polymerase chain reaction analysis // Genet. Mol. Res. 2010. Vol. 9. P. 386–393.
- 156. Silvia V., Michela T., Giuseppina C. A reference integrated map for cultivated grapevine (*Vitis vinifera* L.) from three crosses, based on 283 SSR and 501 SNP-based markers // Springer-Verlag. 2008. Vol. 85. P. 34–45.
- 157. Skoog, D. A., Holler F. J., Crouch S. R. Principles of Instrumental Analysis / 6th ed. ThomsonBrooks // Belmont: ColePublishing. 2007. P. 573.
- 158. Tassie L. Vine identification knowing what you have // Wine Research and Development. 2010. Vol. 19. P.56–59.
- 159. Tautz D., Trick M., Dover G. Cryptic simplicity in DNA is a major source of genetic variation // Nature. 1986. Vol. 322. P. 652–653.
- 160. The Greek Vitis Database [Электронный ресурс] / University of Crete. Wed-мастер S. Monachou. Электрон. дан. Heraklion: University of Crete, 2010. Режим доступа: http://gvd.biology.uoc.gr/gvd/contents/general-info/02a.html
- 161. This P., Cuisset C., Boursiquot J. M. Development of stable RAPD markers for the identification of grapevine rootstocks and the analysis of genetic relationships // Am. J. Enol. Vitic. 1997. Vol. 48. P. 492–501.
- 162. This P., Lahogue F., Adam-Blondon A. F. Towards marker-assisted selection for seedlessness in grapevine // Acta Hort.—2000. Vol. 528. P. 221—229.
- 163. Thomas M. R., Scott N. S. Microsatellite repeats in grapevine reveal DNA polymorphism when analysed as sequence-tagged sites (STSs) // Theor. Appl. Genet. 1993. Vol. 86. P. 985–990.

- 164. Thomas M. R., Matsumoto S., Cain P., Scott N. S. Repetitive DNA of grapevine: classes present and sequences suitable for cultivar identification // Theor. Appl. Genet. 1993. Vol. 86. P. 173–180.
- 165. Thomas M. R., Scott N. S., Botta R. Sequence-tagged site markers in grapevine and citrus // Journal of the Japanese Society for Horticultural. 1998. Vol. 67. P. 1189–1192.
- 166. Tschammer J., Zyprian E. Molecular characterization of grapevine cultivars of Riesling-type and of closely related Burgundies // Vitis. 1994. Vol. 33. P. 249–250.
- 167. Umehara Y., Inagaki A., Tanoue H. Construction and characterization of a rice YAC library for physical mapping // Molecular Breeding. 1995. Vol. 15. P. 79–89.
- 168. Victor M. U., Rongsheng L., Nimisha S. A versatile microfabricated platform for electrophoresis of double– and single–stranded DNA // Electrophoresis.– 2003. – Vol. 24. – P. 151–157
- 169. Vignani R., Scali M., Masi E. and Cresti M. Genomic variability in *Vitis vinifera* L. «Sangiovese» assessed by microsatellite and nonradioactive AFLP test // Electr. J. Biotechnol. 2002. Vol. 5. P. 5–11.
- 170. Vishal P. D., Prashant V. T., Uddhav S. C. A simple method for isolation of genomic DNA from fresh and dry leaves of *Terminalia arjuna* (Roxb.) // Electronic Journal of Biotechnology. 2007. Vol. 10. P. 31–35.
- 171. Vos P. R., Hogers J. AFLP: A new technique for DNA fingerprinting // Nucl. Acids Res. 1995. Vol. 23. P. 407–414.
- 172. Walter T. W., Posluszny U., Kevan P. G. Isoenzyme analysis of the grape // Can. J. Bot. 1989. Vol. 67. P. 294–299.
- 173. Walter B., Martelli G. P. Consideration on grapevine selection and certification // Vitis. 1998. Vol. 37. P. 87–90.
- 174. Wang Z., Weber J. L., Zhong G. Survey of plant short tandem repeats // Theor. Appl. Genet. 1994. Vol. 88. P. 3–6.

- 175. Warren F., Alpha C. Using simple sequence repeats (SSRs) for DNA fingerprinting germplasm accessions of grape (*Vitis* L.) species // Amer. Soc. Hort. Sci. 1998. Vol.123. P.182–188.
- 176. Weber J. L. Human DNA polymorphism and methods of analysis // Curr. Opin. Biotechnology. 1990. Vol. 11. P. 166–171.
- 177. Xu H., Bakalinsky A. T. Identification of grape (Vitis) rootstocks using sequence characterized amplified region DNA markers // Hort. Science. 1996. Vol. 32. P. 267–268.
- 178. Ye G. N., Soylemezoglu G., Weeden N. F. Analysis of the relationship between grapevine cultivars, sports and clones via DNA fingerprinting // Vitis. 1998. Vol. 37. P. 33–38.
- 179. Zhang Q., Liu K. D., Yang G. P. Molekular marker diversity and hybrid sterility in indica-japonica rice crosses // Theor. Appl. Genet. 1997. Vol. 95. P. 112–118.
- 180. Zietkiewicz E., Rafalski A., Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification // Genomics. 1994. Vol. 20. P. 176–183.
- 181. Zlenko V. A., Troshin L. P., Kotikov I. V. An optimized medium for clonal micropropagation of grapevine // Vitis. 1995. Vol. 2. P. 125–126.
- 182. Zulini L., Fabro E. and Peterlunger E. Characterization of the grapevine cultivar Picolit by means of morphological descriptors and molecular markers // Vitis. 2005. Vol. 44. P. 35–38.
- 183. Zulini L., Russo M., Peterlunger E. Genotyping wine and table grape cultivars from Apulia (Southern Italy) using microsatellite markers // Vitis. 2002. Vol. 41. P.183–187.

приложения

Приложение А

Справка о соавторстве на сорт Пиногрик

министерство СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное учреждение

"ГОСУДАРСТВЕННАЯ КОМИССИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ИСПЫТАНИЮ И ОХРАНЕ СЕЛЕКЦИОННЫХ ДОСТИЖЕНИЙ" (ФГБУ "ГОССОРТКОМИССИЯ")

Орликов пер., 1/11, Москва, 107139 Тел.: (495) 607-8626, Факс: (495) 411-8366 http://www.Gossort.com; e-mail: Gossort@Gossort.com

23.10.2014 № 26-9-2/683 na № _____ or ___ ФГБОУ ВПО КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ Ректору профессору А.И. Трубилину

СПРАВКА

ФГБУ «Госсорткомиссия» сообщает, что МИЛОВАНОВ АЛЕКСАНДР ВАЛЕРЬЕВИЧ является соавтором сорта винограда технического ПИНОГРИГ, который находится на государственном испытании с 2014 года (заявка на допуск № 63159 от 29.11.2013; заявка на патент № 63160 от 29.11.2013).

Зам. председателя, начальник от тела регистрации и Госреестров

Ю.Л. Гончаров

Симонова Н.Л. (495) 607-48-27

Приложение Б

Справка о соавторстве на сорт Семидесятилетие Победы

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное учреждение "ГОСУДАРСТВЕННАЯ КОМИССИЯ

"ГОСУДАРСТВЕННАЯ КОМИССИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ИСПЫТАНИЮ И ОХРАНЕ СЕЛЕКЦИОННЫХ ДОСТИЖЕНИЙ" (ФГБУ "ГОССОРТКОМИССИЯ")

Орликов пер., 1/11, Москва, 107139 Тел.: (495) 607-8626, Факс: (495) 411-8366 http://www.Gossort.com; e-mail: Gossort@Gossort.com

21.01.2015 № 26-9-2/07 на № _____ от ____ ФГБОУ ВПО КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ Ректору профессору А.И. Трубилину

СПРАВКА

ФГБУ «Госсорткомиссия» сообщает, что МИЛОВАНОВ АЛЕКСАНДР ВАЛЕРЬЕВИЧ является соавтором сорта винограда технического СЕМИДЕСЯТИЛЕТИЕ ПОБЕДЫ, который находится на государственном испытании с 2015 года (заявка на допуск № 66721 от 15.01.2015; заявка на патент № 66722 от 15.01.2015).

Зам. председателя, начальник отнела регистрации и Госреестров

Ю.Л. Гончаров

Симонова Н.Л. (495) 607-48-27

Приложение В

Протоклон Контроль

Рисунок В1 – Листовые пластинки протоклона и контрольного сорта Антоний Великий

Приложение Г

Таблица Г1 – Сравнение морфометрии листьев протоклона Антоний Великий и сорта контроля

	Клон	[Исході	Исходный сорт	
Признак	Стандартная ошибка	Опыт	Контроль	Стандартная ошибка	
Длина листовой пластинки, мм	8.30775	187.922	150.861	8.621	
Ширина листовой пластинки, мм	8.71066	178.588	148.867	8.02765	
Длина срединной жилки, мм	8.09652	159.952	122.504	7.20811	
Длина нижней боковой жилки, мм	5.00064	97.0301	80.5029	4.2488	
Длина нижней дополнительной жилки, мм	3.25274	55.6436	46.2598	1.58301	
Расстояние от начала нижней боковой жилки до первого зибчика лопасти, мм	2.04173	34.2013	31.8794	1.2975	
Расстояние от основания черешка до конца нижней дополнительной боковой жилки, мм	4.08488	73.6631	59.6366	2.08339	
Длина черешка, мм	9.35856	135.265	114.478	3.84639	
Верхнее добухтовое расстояние, мм	4.67262	57.6493	86.7644	4.71054	
Нижнее добухтовое расстояние, мм	2.20567	54.4347	61.6362	4.53625	
Ширина верхнего зубчика верхней боковой жилки, мм	0.63796	14.1332	12.3148	1.23578	
Длина верхнего зубчика верхней боковой жилки, мм	0.60361	7.1338	10.387	2.38256	
Межлопастное расстояние, мм	4.69814	72.1484	46.301	5.0507	
Ширина нижнего зубчика нижней дополнительной боковой жилки, мм	0.69377	10.6411	11.9051	0.44614	
Длина нижнего зубчика нижней дополнительной боковой жилки, мм	0.47068	7.27507	7.71638	4.17294	
Длина верхней боковой жилки, мм	7.04617	138.656	107.506	6.58515	
Ширина боковой лопасти, мм	2.34298	61.0763	54.6888	4.07985	
Угол альфа, градусы	12.2706	46.1307	36.9409	2.827536	
Угол бета, градусы	22.1777	35.3625	42.8395	3.472145	
Угол дзета, градусы	17.6812	59.8245	52.9299	2.403905	
Угол тета, градусы	20.3862	56.0424	46.0789	1.863818	
Количество зубчиков	Нет	8	8	Нет	

Приложение Д

Протоклон Контроль*

Рисунок Д1 – Сравнение гроздей протоклона Антоний Великий и сорта контроля

^{*} Фотография Контроля сорта Антоний Великий взята с веб-сайта http://vinograd.cc/

Приложение Е

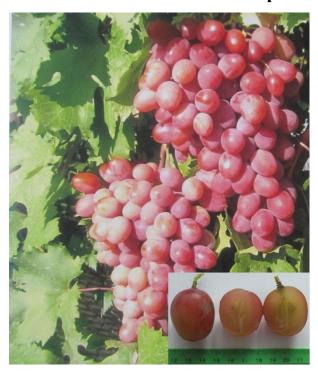
Таблица Е1 – Сравнение урожаев и ягод протоклона Антоний Великий и сорта контроля

Показатель	Протоклон		Контроль		
	Длина, мм	Ширина, мм	Длина, мм	Ширина, мм	
Ягода	35	27	32	29	
Гроздь	330	150	290	150	
Масса грозди [*] , г	660		620		
Урожай с куста, кг	7,7		7,1		

^{*} Здесь и далее приводятся средние показатели по весу грозди и урожаю с куста за 2012-2014 гг.

Приложение Ж

Протоклон Контроль


Рисунок Ж1 — Листовые пластинки протоклона и контрольного сорта Анюта

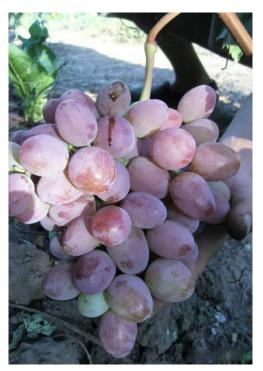

Приложение И

Таблица И1 — Сравнение морфометрических данных листовых пластинок протоклона Анюта и сорта контроля

	Клон		Исход	ный сорт
Признак	Стандартная	Опыт	Контроль	Стандартная
	ошибка	Опыт	Контроль	ошибка
Длина листовой пластинки, мм	4.13334	170.51	163.784	3.52577
Ширина листовой пластинки, мм	2.06745	164.78	142.598	2.85378
Длина срединной жилки, мм	2.55243	135.03	125.893	2.81389
Длина нижней боковой жилки, мм	2.26835	81.393	74.8762	2.06837
Длина нижней дополнительной жилки, мм	1.10083	47.945	54.7807	1.0749
Расстояние от начала нижней боковой жилки до первого зибчика лопасти, мм	1.14259	26.906	29.7968	0.74665
Расстояние от основания черешка до конца нижней дополнительной боковой жилки, мм	1.19269	57.887	65.3896	1.31994
Длина черешка, мм	1.86294	99.922	73.9391	1.58593
Верхнее добухтовое расстояние, мм	1.3701	39.798	47.0636	1.7912
Нижнее добухтовое расстояние, мм	1.29177	37.135	47.2267	1.4871
Ширина верхнего зубчика верхней	0.62887	8.6084	7.97264	1.23522
боковой жилки, мм	0.02007	0.000-	7.57204	1120022
Длина верхнего зубчика верхней боковой жилки, мм	0.80645	9.5181	6.92496	0.54434
Межлопастное расстояние, мм	1.77308	57.454	57.3349	1.51847
Ширина нижнего зубчика нижней дополнительной боковой жилки, мм	0.93248	9.0553	11.8997	0.83884
Длина нижнего зубчика нижней дополнительной боковой жилки, мм	0.61901	5.5972	7.07042	0.22378
Длина верхней боковой жилки, мм	2.14442	120.34	118.869	2.05261
Ширина боковой лопасти, мм	1.58859	55.081	55.1151	1.02946
Угол альфа, градусы	1.47585	28.151	35.7462	1.178046
Угол бета, градусы	1.01451	50.285	45.539	1.166781
Угол дзета, градусы	1.83018	68.008	60.124	1.501076
Угол тета, градусы	1.5315	58.338	49.7777	1.080039
Количество зубчиков	Нет	7	8	Нет

Приложение К

Протоклон Контроль*

Рисунок К1 – Сравнение гроздей протоклона Анюта и сорта контроля

^{*} Фотография Контроля сорта Анюта взята с веб-сайта http://vinograd.cc/

Приложение Л

Таблица Л1 — Сравнение урожаев и ягод протоклона Анюта и сорта контроля

Показатель	Показатан		Контроль	
Показатель	Длина, мм	Ширина, мм	Длина, мм	Ширина, мм
Ягода	35	25	30	21
Гроздь	350	150	320	140
Масса грозди, г	680		600	
Урожай с куста, кг	5,9		5,6	

Приложение М

Протоклон Контроль

Рисунок М1 – Листовые пластинки протоклона и контрольного сорта Аркадия розовая

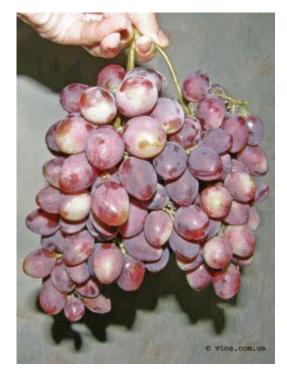

Приложение Н

Таблица H1 — Сравнение морфометрических данных листовых пластинок протоклона Аркадия розовая и сорта контроля

Признак	Клон		Исходный сорт	
•	Стандартная ошибка	Опыт	Контроль	Стандартная ошибка
Длина листовой пластинки, мм	1.30397	146.56	155.374	1.92359
Ширина листовой пластинки, мм	1.51974	169.40	167.244	1.42771
Длина срединной жилки, мм	1.50653	104.97	106.971	1.49419
Длина нижней боковой жилки, мм	1.04318	83.291	93.7509	0.79223
Длина нижней дополнительной жилки, мм	1.0207	55.405	57.7554	0.51582
Расстояние от начала нижней боковой жилки до первого зибчика лопасти, мм	1.87847	30.534	38.3373	0.35313
Расстояние от основания черешка до конца нижней дополнительной боковой жилки, мм	0.83911	59.933	67.1377	0.57957
Длина черешка, мм	1.5612	120.99	134.501	1.02195
Верхнее добухтовое расстояние, мм	1.87847	73.540	77.3977	1.06245
Нижнее добухтовое расстояние, мм	0.59933	66.820	79.511	0.71073
Ширина верхнего зубчика верхней боковой жилки, мм	0.42324	13.656	12.611	0.2683
Длина верхнего зубчика верхней боковой жилки, мм	0.59754	6.9246	6.45996	0.38356
Межлопастное расстояние, мм	0.74991	1.8109	7.27218	0.68024
Ширина нижнего зубчика нижней дополнительной боковой жилки, мм	0.55478	9.4760	11.1091	0.21502
Длина нижнего зубчика нижней дополнительной боковой жилки, мм	0.33581	5.5666	7.44794	0.12545
Длина верхней боковой жилки, мм	1.50923	112.40	112.026	1.37398
Ширина боковой лопасти, мм	1.4108	64.295	53.812	0.86085
Угол альфа, градусы	1.37021	53.128	49.2848	0.358431
Угол бета, градусы	1.37266	47.608	52.0506	0.504631
Угол дзета, градусы	0.73749	97.485	76.0663	0.726065
Угол тета, градусы	0.44517	74.985	51.3942	0.518981
Количество зубчиков	Нет	7	7	Нет

Приложение П

Протоклон Контроль*

Рисунок П1 – Сравнение гроздей протоклона Аркадия розовая и сорта контроля

^{*}Фотография Контроля сорта Аркадия розовая взята с веб-сайта http://vinograd.info/

Приложение Р

Таблица Р1 – Сравнение урожаев и ягод протоклона Аркадия розовая и сорта контроля

Показатель		Протоклон	Контроль		
TTORASATESIB	Длина, мм Ширина, мм		Длина, мм	Ширина, мм	
Ягода	30	25	40	30	
Гроздь	330	210	190	170	
Масса грозди, г	511		455		
Урожай с куста, кг	6,8		6,0		

Приложение С

Протоклон Контроль

Рисунок С1 – Листовые пластинки протоклона и контрольного сорта Гелиос

Приложение Т

Таблица Т1 — Сравнение морфометрических данных листовых пластинок протоклона Гелиос и сорта контроля

	Клон	[Исходный сорт	
Признак	Стандартная ошибка	Опыт	Контроль	Стандартная ошибка
Длина листовой пластинки, мм	1.83151	128.33	142.976	1.7584
Ширина листовой пластинки, мм	1.98603	121.015	163.451	1.6579
Длина срединной жилки, мм	1.42416	93.499	108.065	1.3363
Длина нижней боковой жилки, мм	1.51223	60.570	81.7239	0.8542
Длина нижней дополнительной жилки, мм	1.02112	46.341	41.9672	0.5380
Расстояние от начала нижней боковой жилки до первого зибчика лопасти, мм	0.8Н/Д3	27.333	27.2828	0.3845
Расстояние от основания черешка до конца нижней дополнительной боковой жилки, мм	1.20289	53.923	51.2194	0.6275
Длина черешка, мм	1.77869	92.711	101.567	1.1843
Верхнее добухтовое расстояние, мм	1.05181	69.827	56.1493	0.7794
Нижнее добухтовое расстояние, мм	0.33652	48.014	38.6068	0.7501
Ширина верхнего зубчика верхней боковой жилки, мм	0.50903	6.6077	6.32085	0.1935
Длина верхнего зубчика верхней боковой жилки, мм	0.81617	5.7175	11.1096	0.1499
Межлопастное расстояние, мм	0.28852	31.809	27.9691	0.6335
Ширина нижнего зубчика нижней дополнительной боковой жилки, мм	0.51309	10.095	7.49932	0.1724
Длина нижнего зубчика нижней дополнительной боковой жилки, мм	0.50915	8.1276	5.88295	0.1229
Длина верхней боковой жилки, мм	1.05943	80.291	103.447	1.1429
Ширина боковой лопасти, мм	2.06784	44.257	52.4734	3.817
Угол альфа, градусы	0.50506	32.862	33.6908	0.51975
Угол бета, градусы	0.28236	46.282	44.6645	0.57088
Угол дзета, градусы	0.20068	73.991	75.9053	0.77551
Угол тета, градусы	1.03578	57.682	62.2869	1.32511
Количество зубчиков	Нет	6	9	Нет

Приложение У

Протоклон Контроль* Рисунок У1 — Сравнение гроздей протоклона Гелиос и сорта контроля

^{*}Фотография Контроля сорта Гелиос взята с веб-сайта http://vinograd.info/

Приложение Ф

Таблица $\Phi 1$ — Сравнение урожаев и ягод протоклона Гелиос и сорта контроля

Показатель	Протоклон		Контроль		
Показатель	Длина, мм	Ширина, мм	Длина, мм	Ширина, мм	
Ягода	31	22	26	20	
Гроздь	300	240	260	220	
Масса грозди, г	461		406		
Урожай с куста, кг	7,2		6,7		

Приложение Х

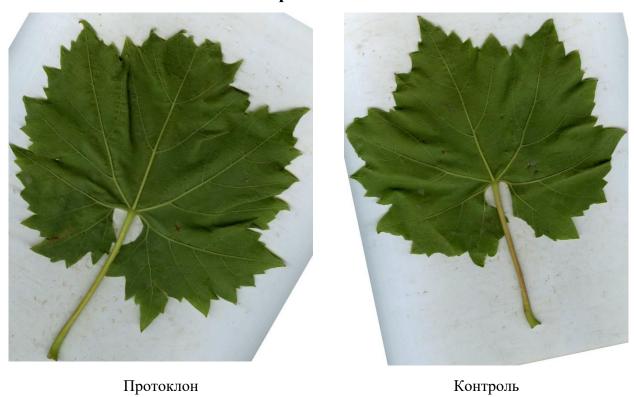


Рисунок X1 — Листовые пластинки протоклона и контрольного сорта Ливия


Приложение Ц

Таблица Ц1 — Сравнение морфометрических данных листовых пластинок протоклона Ливия и сорта контроля

П	Клон		Исходный сорт	
Признак	Стандартная ошибка	Опыт	Контроль	Стандартная ошибка
Длина листовой пластинки, мм	1.54965	187.368	169.434	1.97122
Ширина листовой пластинки, мм	1.64451	187.734	161.727	1.98848
Длина срединной жилки, мм	1.33146	128.422	116.014	1.7054
Длина нижней боковой жилки, мм	1.65841	94.5262	77.786	1.15481
Длина нижней дополнительной жилки, мм	0.86468	48.4377	56.0487	0.77343
Расстояние от начала нижней боковой жилки до первого зибчика лопасти, мм	0.73056	32.273	42.2719	0.49402
Расстояние от основания черешка до конца нижней дополнительной боковой жилки, мм	0.96169	58.3005	60.7622	0.98226
Длина черешка, мм	2.14684	104.278	88.1213	2.476
Верхнее добухтовое расстояние, мм	1.23493	90.4753	78.8492	1.29777
Нижнее добухтовое расстояние, мм	1.96365	78.7879	47.2404	1.50038
Ширина верхнего зубчика верхней боковой жилки, мм	0.52888	15.2674	13.9089	0.3102
Длина верхнего зубчика верхней боковой жилки, мм	0.74195	13.0963	13.2699	0.65311
Межлопастное расстояние, мм	1.27485	4.33944	6.10044	1.0388
Ширина нижнего зубчика нижней дополнительной боковой жилки, мм	0.73501	17.835	11.6132	0.33095
Длина нижнего зубчика нижней дополнительной боковой жилки, мм	0.98892	10.0511	6.81467	0.22402
Длина верхней боковой жилки, мм	1.31328	120.79	103.796	1.61896
Ширина боковой лопасти, мм	1.4294	54.6694	54.5996	1.01081
Угол альфа, градусы	0.03852	44.4113	49.3785	0.699475
Угол бета, градусы	0.34613	50.1783	46.2454	0.64306
Угол дзета, градусы	0.61188	86.255	90.5458	0.732562
Угол тета, градусы	0.80332	64.081	69.5024	0.869169
Количество зубчиков	Нет	6	5	Нет

Приложение Ш

Протоклон Контроль*

Рисунок Ш1 — Сравнение гроздей протоклона Ливия и сорта контроля

^{*} Фотография Контроля сорта Ливия взята с веб-сайта http://vinograd.info/

Приложение Щ

Таблица Щ1 — Сравнение урожаев и ягод протоклона Ливия и сорта контроля

Показатель	Протоклон		Контроль		
	Длина, мм	Ширина, мм	Длина, мм	Ширина, мм	
Ягода	36	15	33	14	
Гроздь	300	200	280	200	
Масса грозди, г	573		460		
Урожай с куста, кг	4,73		3,90		

Приложение Э

Визуализации продуктов амплификации использовнных праймеров

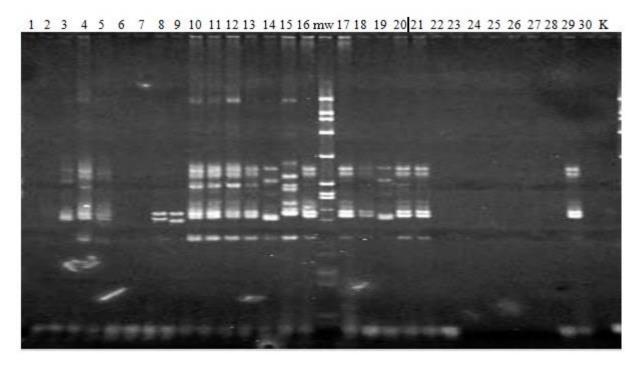


Рисунок Э1 — Визуализация продуктов амплификации SSR-маркера VrZag62

Примечание. 1, 2 и т. д. – номера образцов, mw – маркер молекулярного веса pBR322/Alu1, K – контроль, здесь и далее.

Условные обозначения: 1. Рислинг 7-12-201 15-1 1-24-15, 2. Пино серый 46, 3. Пино бел 31, 4. Рислинг алькадар 34г, 5. Мерло 14 грам, 6. Рислинг алькадар 34а, 7. Пино бел 32, 8. Пино белый 6, 9. Рислинг 31411111, 10. Рислинг 991, 11. Рислинг 314991, 12. Рислинг 7151077п, 13. Каберне-Совиньон 5а, 14. Каберне-Совиньон 271, 15. Рислинг 143143111, 16. Рислинг 830, 17. Рислинг 3144111, 18. Пинофагр, 19. Рислинг 7111891, 20. Рислинг 3144111, 21. Рислинг 7121431, 22. Рислинг 130, 23. Рислинг клон, 24. Рислинг 3142092, 25. Мерло 348, 26. Рислинг 964, 27. Рислинг 3991, 28. Рислинг алькадар 346, 29. Рислинг алькадар 34, 30. Каберне-Совиньон 15 Каб. Мысхако.

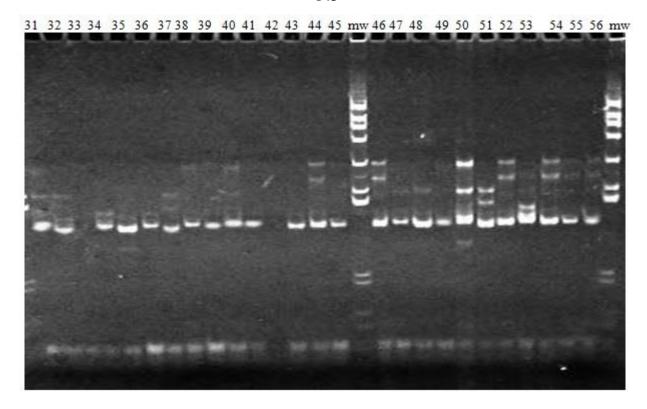


Рисунок Э2 — Визуализация продуктов амплификации SSR-маркера VrZag62

Условные обозначения: 1. 31. Рислинг 492. 32. Рошфор-Ф, 33. Супер Э. - Ф, 34. Алиготе 7-10, 35. Ливия-Ф, 36. Мерло 10-8, 37. Солярис 70-16, 38. Вердо черный 7-6, 39. Каберне-Совиньон 210-8, 40. Рислинг 245-7, 41. Йоханитер 80-6, 42. Йоханитер 79-4, 43. Каберне карбон 525-4, 44. Каберне Совиньон 210-4, 45. Совиньон белый 23-11, 46. Совиньон белый 23-8, 47. Мерло 10-9, 48. Каберне Карбон 525-6, 49. Рислинг 245-5, 50. Вердо черный 7-2, 51. Солярис 70-21, 52. Каберне Кортис 271-7, 53. Алиготе 7РЯД-7К, 54. Пино черный 50-11, 55. Каберне Кортис 271-2, 56. Пино черный 50-8.

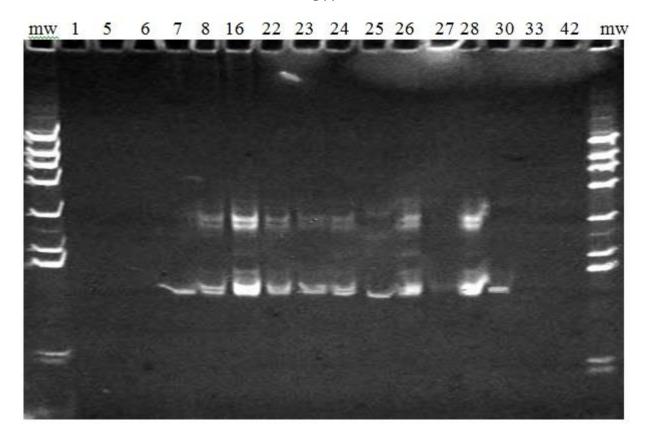
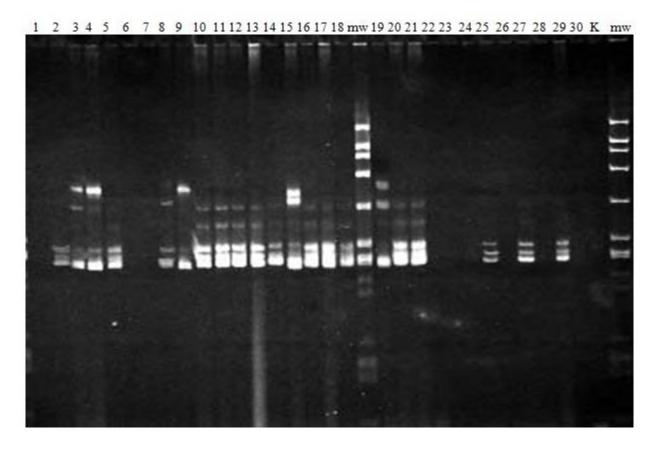
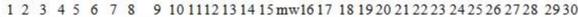


Рисунок Э3 — Визуализация продуктов амплификации SSR-маркера VrZag62

Условные обозначения: 1. Рислинг 7-12-201 15-1 1-24-15, 5. Мерло 14 грам, 6. Рислинг алькадар 34а, 7. Пино бел 32, 8. Пино белый 6, 22. Рислинг 130, 23. Рислинг клон, 24. Рислинг 3142092, 25. Мерло 348, 26. Рислинг 964, 27. Рислинг 3991,28. Рислинг алькадар 346, 30. Каберне-Совиньон 15 Каб. Мысхако, 33. Супер Э. - Ф, 42. Йоханитер 79-4.




Рисунок Э4 — Визуализация продуктов амплификации SSR-маркера VrZag79

Условные обозначения: 1. Рислинг 7-12-201 15-1 1-24-15, 2. Пино серый 46, 3. Пино бел 31, 4. Рислинг алькадар 34г, 5. Мерло 14 грам, 6. Рислинг алькадар 34а, 7. Пино бел 32, 8. Пино белый 6, 9. Рислинг 31411111, 10. Рислинг 991, 11. Рислинг 314991, 12. Рислинг 7151077п, 13. Каберне-Совиньон 5а, 14. Каберне-Совиньон 271, 15. Рислинг 143143111, 16. Рислинг 830, 17. Рислинг 3144111, 18. Пинофагр, 19. Рислинг 7111891, 20. Рислинг 3144111, 21. Рислинг 7121431, 22. Рислинг 130, 23. Рислинг клон, 24. Рислинг 3142092, 25. Мерло 348, 26. Рислинг 964, 27. Рислинг 3991,28. Рислинг алькадар 346, 29. Рислинг алькадар 34, 30. Каберне-Совиньон 15 Каб. Мысхако.

Рисунок Э5 — Визуализация продуктов амплификации SSR-маркера VrZag79

Условные обозначения: 6. Рислинг алькадар 34а, 18. Пинофагр, 22. Рислинг 130, 23. Рислинг клон, 24. Рислинг 3142092, 26. Рислинг 964, 28. Рислинг алькадар 346, 30. Каберне-Совиньон 15 Каб. Мысхако, 31. Рислинг 492, 32. Рошфор-Ф, 33. Супер Э.-Ф, 34. Алиготе 7-10, 35. Ливия-Ф, 36. Мерло 10-8, 37. Солярис 70-16, 38. Вердо черный 7-6, 39. Каберне-Совиньон 210-8, 40. Рислинг 245-7, 41. Йоханитер 80-6, 42. Йоханитер 79-4, 43. Каберне карбон 525-4, 44. Каберне-Совиньон 210-4, 45. Совиньон белый 23-11, 46. Совиньон белый 23-8, 47. Мерло 10-9, 48. Каберне Карбон 525-6, 49. Рислинг 245-5, 50. Вердо черный 7-2, 51. Солярис 70-21, 52. Каберне Кортис 271-7, 53. Алиготе 7РЯД-7К, 54. Пино черный 50-11, 55. Каберне Кортис 271-2, 56. Пино черный 50-8.

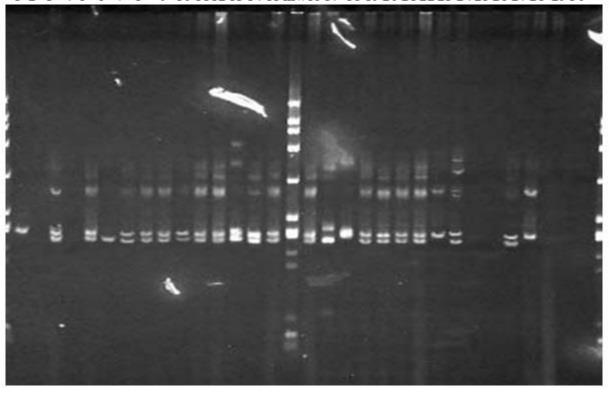


Рисунок Э6 — Визуализация продуктов амплификации SSR-маркера VVMD5

Условные обозначения: 1. Рислинг 7-12-201 15-1 1-24-15, 2. Пино серый 46, 3. Пино бел 31, 4. Рислинг алькадар 34г, 5. Мерло 14 грам, 6. Рислинг алькадар 34а, 7. Пино бел 32, 8. Пино белый 6, 9. Рислинг 31411111, 10. Рислинг 991, 11. Рислинг 314991, 12. Рислинг 7151077п, 13. Каберне-Совиньон 5а, 14. Каберне-Совиньон 271, 15. Рислинг 143143111, 16. Рислинг 830, 17. Рислинг 3144111, 18. Пинофагр, 19. Рислинг 7111891, 20. Рислинг 3144111, 21. Рислинг 7121431, 22. Рислинг 130, 23. Рислинг клон, 24. Рислинг 3142092, 25. Мерло 348, 26. Рислинг 964, 27. Рислинг 3991,28. Рислинг алькадар 346, 29. Рислинг алькадар 34, 30. Каберне-Совиньон 15 Каб. Мысхако.

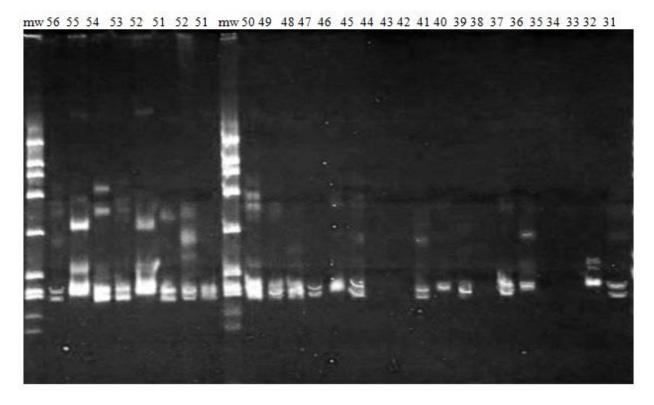


Рисунок Э7 – Визуализация продуктов амплификации SSR-маркера VVMD5

Условные обозначения: 31. Рислинг 492. 32. Рошфор-Ф, 33. Супер Э. - Ф, 34. Алиготе 7-10, 35. Ливия-Ф, 36. Мерло 10-8, 37. Солярис 70-16, 38. Вердо черный 7-6, 39. Каберне-Совиньон 210-8, 40. Рислинг 245-7, 41. Йоханитер 80-6, 42. Йоханитер 79-4, 43. Каберне карбон 525-4, 44. Каберне Совиньон 210-4, 45. Совиньон белый 23-11, 46. Совиньон белый 23-8, 47. Мерло 10-9, 48. Каберне Карбон 525-6, 49. Рислинг 245-5, 50. Вердо черный 7-2, 51. Солярис 70-21, 52. Каберне Кортис 271-7, 53. Алиготе 7РЯД-7К, 54. Пино черный 50-11, 55. Каберне Кортис 271-2, 56. Пино черный 50-8.

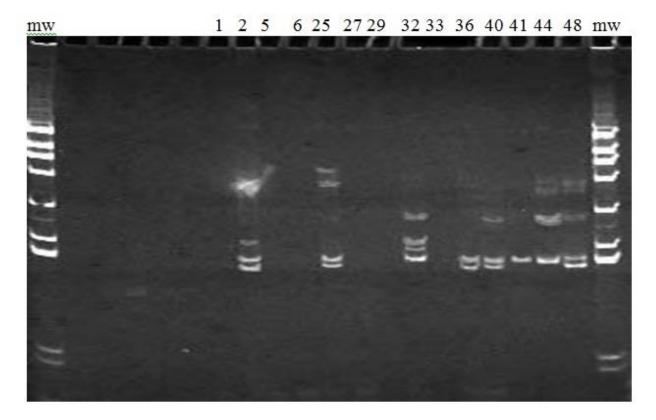


Рисунок Э8 — Визуализация продуктов амплификации SSR-маркера VVMD5

Условные обозначения: 1. Рислинг 7-12-201 15-1 1-24-15, 2. Пино серый 46, 5. Мерло 14 грам, 6. Рислинг алькадар 34а, 25. Мерло 348, 27. Рислинг 3991, 29. Рислинг алькадар 34,32. Рошфор-Ф, 33. Супер Э. - Ф, 36. Мерло 10-8, 40. Рислинг 245-7, 41. Йоханитер 80-6, 44. Каберне Совиньон 210-4, 48. Каберне Карбон 525-6.

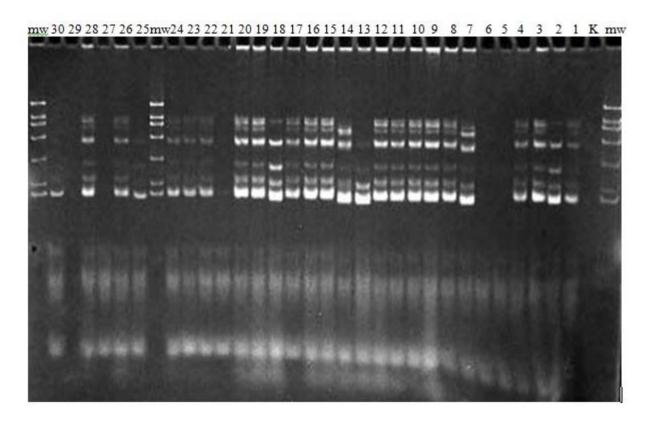


Рисунок Э9 — Визуализация продуктов амплификации SSR-маркера VVMD7

Условные обозначения: 1. Рислинг 7-12-201 15-1 1-24-15, 2. Пино серый 46, 3. Пино бел 31, 4. Рислинг алькадар 34г, 5. Мерло 14 грам, 6. Рислинг алькадар 34а, 7. Пино бел 32, 8. Пино белый 6, 9. Рислинг 31411111, 10. Рислинг 991, 11. Рислинг 314991, 12. Рислинг 7151077п, 13. Каберне-Совиньон 5а, 14. Каберне-Совиньон 271, 15. Рислинг 143143111, 16. Рислинг 830, 17. Рислинг 3144111, 18. Пинофагр, 19. Рислинг 7111891, 20. Рислинг 3144111, 21. Рислинг 7121431, 22. Рислинг 130, 23. Рислинг клон, 24. Рислинг 3142092, 25. Мерло 348, 26. Рислинг 964, 27. Рислинг 3991,28. Рислинг алькадар 346, 29. Рислинг алькадар 34, 30. Каберне-Совиньон 15 Каб. Мысхако.

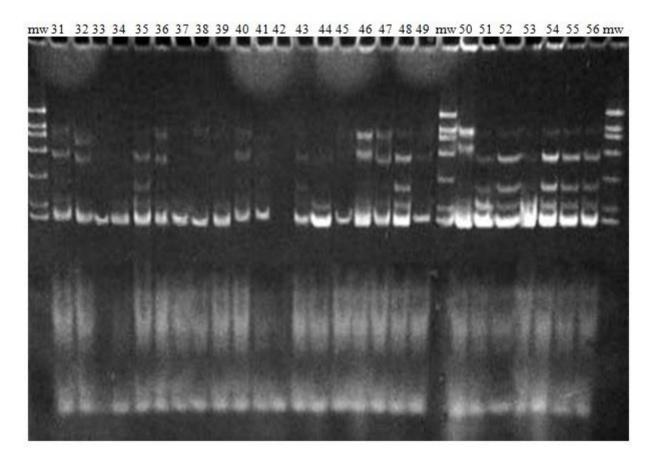


Рисунок Э10 – Визуализация продуктов амплификации SSR-маркера VVMD7

Условные обозначения: 31. Рислинг 492. 32. Рошфор-Ф, 33. Супер Э. - Ф, 34. Алиготе 7-10, 35. Ливия-Ф, 36. Мерло 10-8, 37. Солярис 70-16, 38. Вердо черный 7-6, 39. Каберне-Совиньон 210-8, 40. Рислинг 245-7, 41. Йоханитер 80-6, 42. Йоханитер 79-4, 43. Каберне Карбон 525-4, 44. Каберне Совиньон 210-4, 45. Совиньон белый 23-11, 46. Совиньон белый 23-8, 47. Мерло 10-9, 48. Каберне Карбон 525-6, 49. Рислинг 245-5, 50. Вердо черный 7-2, 51. Солярис 70-21, 52. Каберне Кортис 271-7, 53. Алиготе 7РЯД-7К, 54. Пино черный 50-11, 55. Каберне Кортис 271-2, 56. Пино черный 50-8.

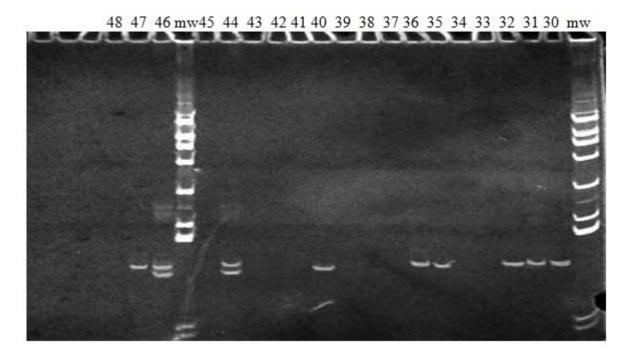


Рисунок Э11 – Визуализация продуктов амплификации SSR-маркера VVMD27

Условные обозначения: 31. Рислинг 492. 32. Рошфор-Ф, 33. Супер Э. - Ф, 34. Алиготе 7-10, 35. Ливия-Ф, 36. Мерло 10-8, 37. Солярис 70-16, 38. Вердо черный 7-6, 39. Каберне-Совиньон 210-8, 40. Рислинг 245-7, 41. Йоханитер 80-6, 42. Йоханитер 79-4, 43. Каберне Карбон 525-4, 44. Каберне Совиньон 210-4, 45. Совиньон белый 23-11, 46. Совиньон белый 23-8, 47. Мерло 10-9, 48. Каберне Карбон 525-6.

51 52 53 54 55 56

Рисунок Э12 – Визуализация продуктов амплификации SSR-маркера VVMD27

Условные обозначения: 51. Солярис 70-21, 52. Каберне Кортис 271-7, 53. Алиготе 7РЯД-7К, 54. Пино черный 50-11, 55. Каберне Кортис 271-2, 56. Пино черный 50-8.

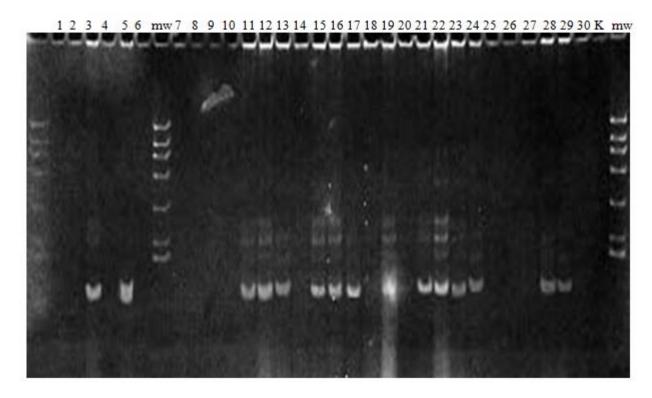


Рисунок Э13 – Визуализация продуктов амплификации SSR-маркера VVMD27

Условные обозначения: 1. Рислинг 7-12-201 15-1 1-24-15, 2. Пино серый 46, 3. Пино бел 31, 4. Рислинг алькадар 34г, 5. Мерло 14 грам, 6. Рислинг алькадар 34а, 7. Пино бел 32, 8. Пино белый 6, 9. Рислинг 31411111, 10. Рислинг 991, 11. Рислинг 314991, 12. Рислинг 7151077п, 13. Каберне-Совиньон 5а, 14. Каберне-Совиньон 271, 15. Рислинг 143143111, 16. Рислинг 830, 17. Рислинг 3144111, 18. Пинофагр, 19. Рислинг 7111891, 20. Рислинг 3144111, 21. Рислинг 7121431, 22. Рислинг 130, 23. Рислинг клон, 24. Рислинг 3142092, 25. Мерло 348, 26. Рислинг 964, 27. Рислинг 3991,28. Рислинг алькадар 346, 29. Рислинг алькадар 34, 30. Каберне-Совиньон 15 Каб. Мысхако.

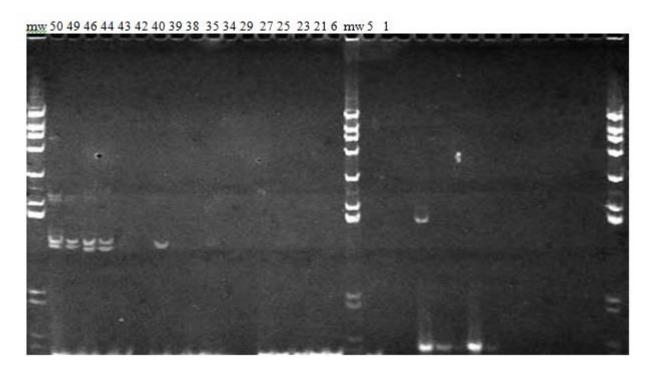


Рисунок Э14 – Визуализация продуктов амплификации SSR-маркера VVMD27

Условные обозначения: 1. Рислинг 7-12-201 15-1 1-24-15, 5. Мерло 14 грам, 6. Рислинг алькадар 34а, 21. Рислинг 7121431, 23. Рислинг клон, 25. Мерло 348, 27. Рислинг 3991, 29. Рислинг алькадар 34, 34. Алиготе 7-10, 35. Ливия-Ф, 38. Вердо черный 7-6, 39. Каберне-Совиньон 210-8, 40. Рислинг 245-7, 42. Йоханитер 79-4, 43. Каберне Карбон 525-4, 44. Каберне Совиньон 210-4, 46. Совиньон белый 23-8, 49. Рислинг 245-5, 50. Вердо черный 7-2.

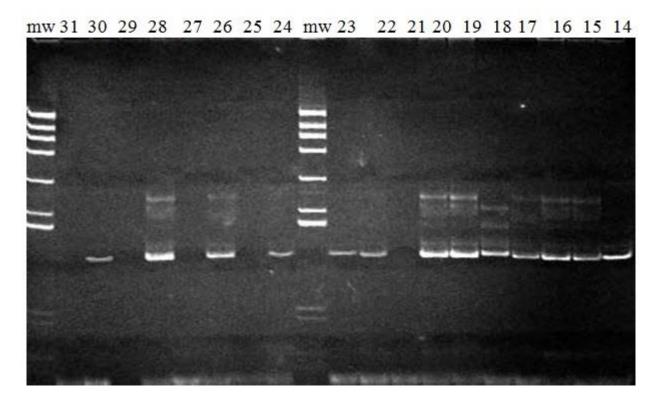


Рисунок Э15 – Визуализация продуктов амплификации SSR-маркера VVMD27

Условные обозначения: 14. Каберне-Совиньон 271, 15. Рислинг 143143111, 16. Рислинг 830, 17. Рислинг 3144111, 18. Пинофагр, 19. Рислинг 7111891, 20. Рислинг 3144111, 21. Рислинг 7121431, 22. Рислинг 130, 23. Рислинг клон, 24. Рислинг 3142092, 25. Мерло 348, 26. Рислинг 964, 27. Рислинг 3991, 28. Рислинг алькадар 346, 29. Рислинг алькадар 34, 30. Каберне-Совиньон 15 Каб. Мысхако, 31. Рислинг 492.

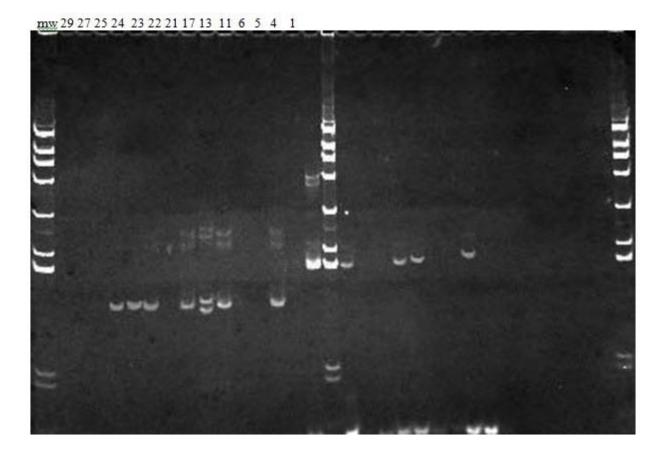


Рисунок Э16 – Визуализация продуктов амплификации SSR-маркера VVMD27

Условные обозначения: 1. Рислинг 7-12-201 15-1 1-24-15, 4. Рислинг алькадар 34г, 5. Мерло 14 грам, 6. Рислинг алькадар 34а, 11. Рислинг 314991, 13. Каберне-Совиньон 5а, 17. Рислинг 3144111, 21. Рислинг 7121431, 22. Рислинг 130, 23. Рислинг клон, 24. Рислинг 3142092, 25. Мерло 348, 27. Рислинг 3991, 29. Рислинг алькадар 34.

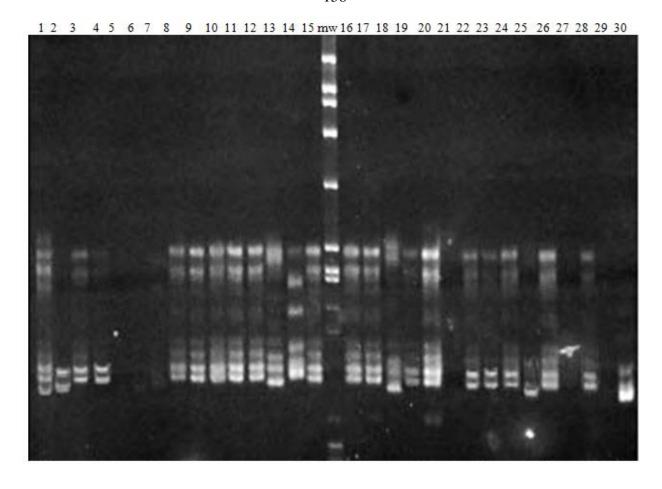


Рисунок Э17 – Визуализация продуктов амплификации SSR-маркера VVS2

Условные обозначения: 1. Рислинг 7-12-201 15-1 1-24-15, 2. Пино серый 46, 3. Пино бел 31, 4. Рислинг алькадар 34г, 5. Мерло 14 грам, 6. Рислинг алькадар 34а, 7. Пино бел 32, 8. Пино белый 6, 9. Рислинг 31411111, 10. Рислинг 991, 11. Рислинг 314991, 12. Рислинг 7151077п, 13. Каберне-Совиньон 5а, 14. Каберне-Совиньон 271, 15. Рислинг 143143111, 16. Рислинг 830, 17. Рислинг 3144111, 18. Пинофагр, 19. Рислинг 7111891, 20. Рислинг 3144111, 21. Рислинг 7121431, 22. Рислинг 130, 23. Рислинг клон, 24. Рислинг 3142092, 25. Мерло 348, 26. Рислинг 964, 27. Рислинг 3991, 28. Рислинг алькадар 346, 29. Рислинг алькадар 34, 30. Каберне-Совиньон 15 Каб. Мысхако.

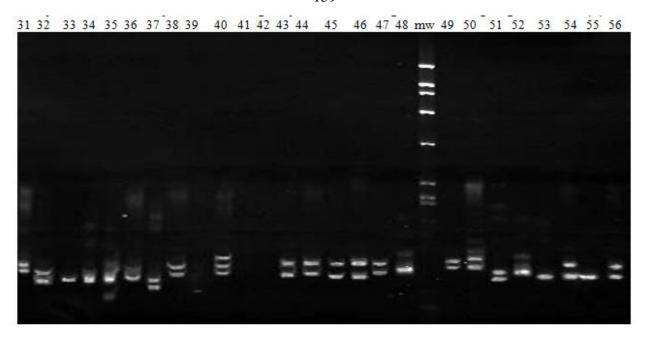


Рисунок Э18 – Визуализация продуктов амплификации SSR-маркера VVS2

Условные обозначения: 31. Рислинг 492, 32. Рошфор-Ф, 33. Супер Э. - Ф, 34. Алиготе 7-10, 35. Ливия-Ф, 36. Мерло 10-8, 37. Солярис 70-16, 38. Вердо черный 7-6, 39. Каберне-Совиньон 210-8, 40. Рислинг 245-7, 41. Йоханитер 80-6, 42. Йоханитер 79-4, 43. Каберне карбон 525-4, 44. Каберне Совиньон 210-4, 45. Совиньон белый 23-11, 46. Совиньон белый 23-8, 47. Мерло 10-9, 48. Каберне Карбон 525-6, 49. Рислинг 245-5, 50. Вердо черный 7-2, 51. Солярис 70-21, 52. Каберне Кортис 271-7, 53. Алиготе 7РЯД-7К, 54. Пино черный 50-11, 55. Каберне Кортис 271-2, 56. Пино черный 50-8.

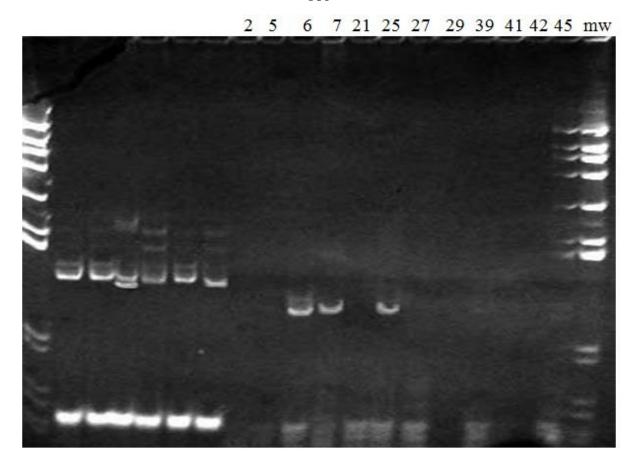


Рисунок Э19 – Визуализация продуктов амплификации SSR-маркера VVS2

Условные обозначения: 2. Пино серый 46, 5. Мерло 14 грам, 6. Рислинг алькадар 34а, 7. Пино бел 32, 21. Рислинг 7121431, 25. Мерло 348, 27. Рислинг 3991, 29. Рислинг алькадар 34, 39. Каберне-Совиньон 210-8, 41. Йоханитер 80-6, 42. Йоханитер 79-4, 45. Совиньон белый 23-11.

Рисунок Э20 — Визуализация продуктов амплификации SSR-маркера VVS2

Условные обозначения: 2. Пино серый 46, 5. Мерло 14 грам, 21. Рислинг 7121431, 25. Мерло 348, 27. Рислинг 3991, 29. Рислинг алькадар 34, 39. Каберне-Совиньон 210-8, 41. Йоханитер 80-6, 42. Йоханитер 79-4, 45. Совиньон белый 23-11.

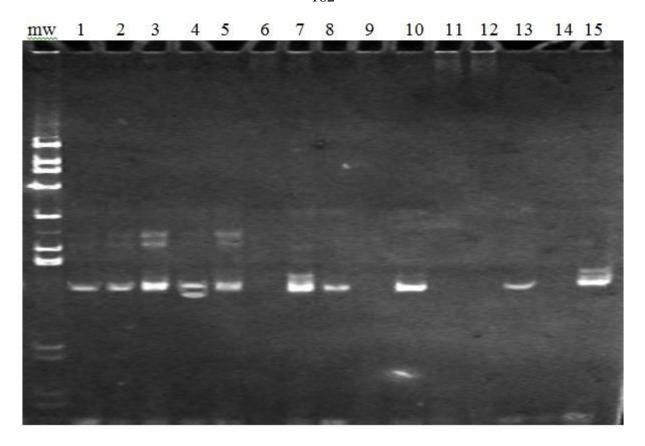


Рисунок Э21 – Визуализация продуктов амплификации SSR-маркера VrZag62

Условные обозначения: 1. Анюта 5-7, 2.Анюта 5-5, 3. Анюта, 4. Анюта Ф, 5. Ливия 14-6, 6. Ливия 14-5, 7. Ливия, 8. Ливия Ф, 9. Гелиос 50-5, 10. Гелиос 50-6, 11. Академический К, 12.Академик, 13.Долгожданный 6-8, 14. Долгожданный 6-9, 15.Долгожданный.

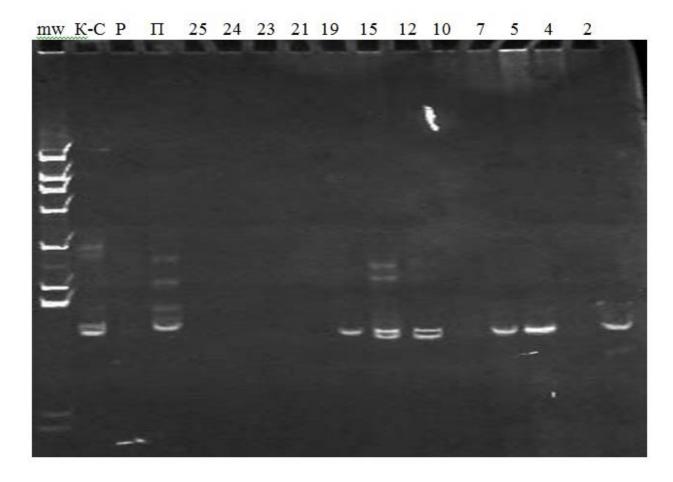


Рисунок Э22 – Визуализация продуктов амплификации SSR-маркера VrZag62

Условные обозначения: 2. Анюта 5-5, 4. Анюта Ф, 5. Ливия 14-6, 7. Ливия, 10. Гелиос 50-6, 12. Академик, 15. Долгожданный, 19. Антоний Великий, 21. Аркадия розовая 2-5, 23. Солярис 10-11, 24. Солярис 11-11, 25. Йоханнитер 10-11. К-С, М, Р, П (Каберне-Совиньон, Мерло, Рислинг и Пино) — ссылки для последующего генетического анализа и корректировки данных, получаемых при анализе гель-акриламидных пластин, здесь и далее.

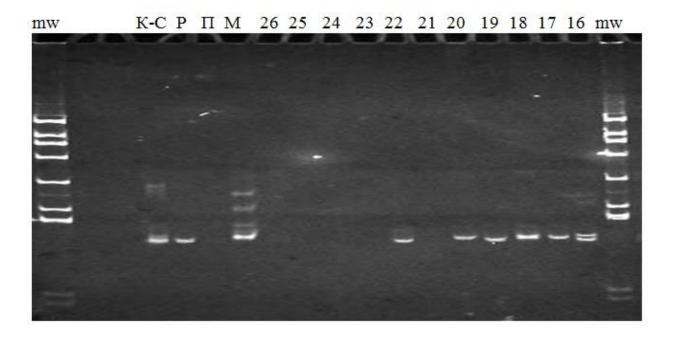


Рисунок Э23 – Визуализация продуктов амплификации SSR-маркера VrZag62

Условные обозначения: 16. Долгожданный Ф, 17. Антоний Великий 30-5, 18. Антоний Великий 30-6, 19. Антоний Великий, 20.Антоний Великий Ф, 21. Аркадия розовая 2-5, 22. Аркадия розовая 2-6, 23. Солярис 10-11, 24. Солярис 11-11, 25. Йоханнитер 10-11, 26. Йоханнитер 11-11.

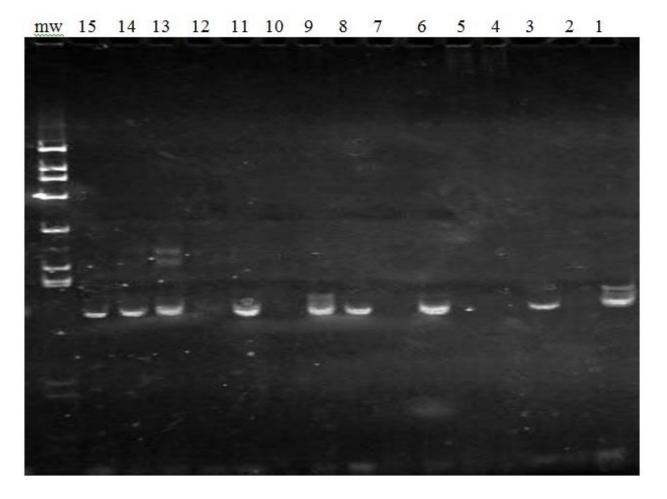


Рисунок Э24 — Визуализация продуктов амплификации SSR-маркера VrZag79

Условные обозначения: 1. Анюта 5-7, 2. Анюта 5-5, 3. Анюта, 4. Анюта Ф, 5. Ливия 14-6, 6.Ливия 14-5, 7. Ливия, 8. Ливия Ф, 9. Гелиос 50-5, 10. Гелиос 50-6, 11. Академический К, 12. Академик, 13. Долгожданный 6-8, 14. Долгожданный 6-9, 15. Долгожданный.

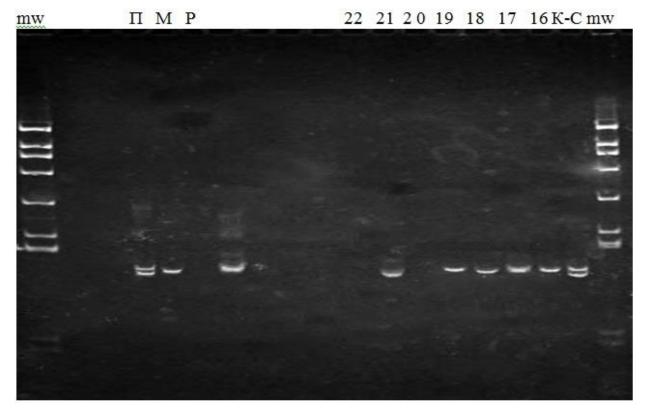


Рисунок Э25 — Визуализация продуктов амплификации SSR-маркера VrZag79

Условные обозначения: 16. Долгожданный Ф, 17. Антоний Великий 30-5, 18. Антоний Великий 30-6, 19. Антоний Великий, 20. Антоний Великий Ф, 21. Аркадия розовая 2-5, 22. Аркадия розовая 2-6.

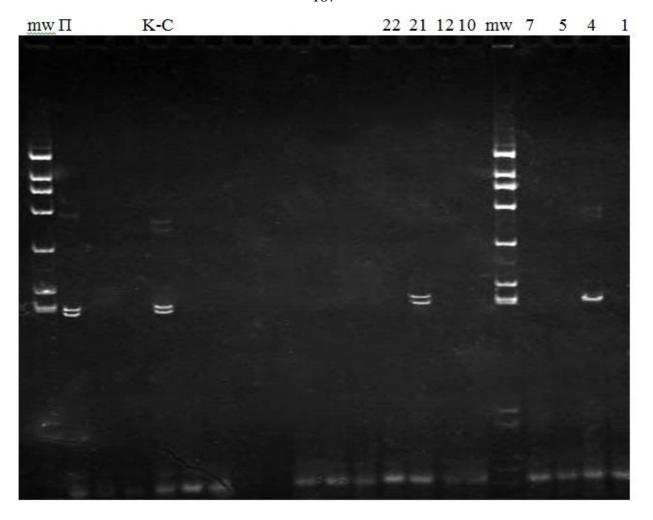


Рисунок Э26 – Визуализация продуктов амплификации SSR-маркера VrZag79 Условные обозначения: 4. Анюта Ф, 5. Ливия 14-6, 7. Ливия, 10. Гелиос 50-6, 12. Академик, 21. Аркадия розовая 2-5, 22. Аркадия розовая 2-6.

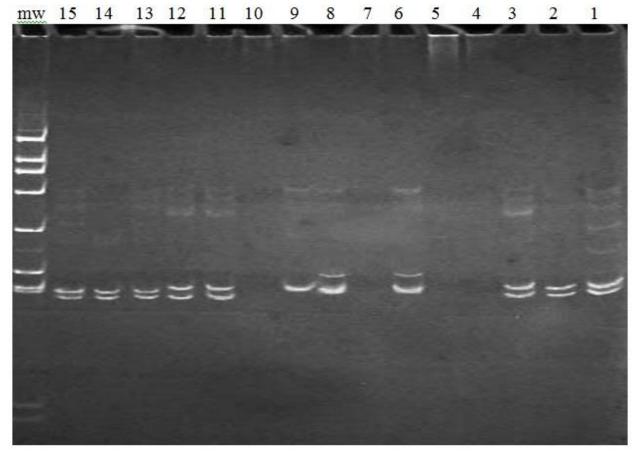


Рисунок Э27 – Визуализация продуктов амплификации SSR-маркера VVMD5

Условные обозначения: 1. Анюта 5-7, 2. Анюта 5-5, 3.Анюта, 4. Анюта Ф, 5. Ливия 14-6, 6. Ливия 14-5, 7. Ливия, 8. Ливия Ф, 9. Гелиос 50-5, 10. Гелиос 50-6, 11. Академический К, 12. Академик, 13. Долгожданный 6-8, 14. Долгожданный 6-9, 15.Долгожданный.

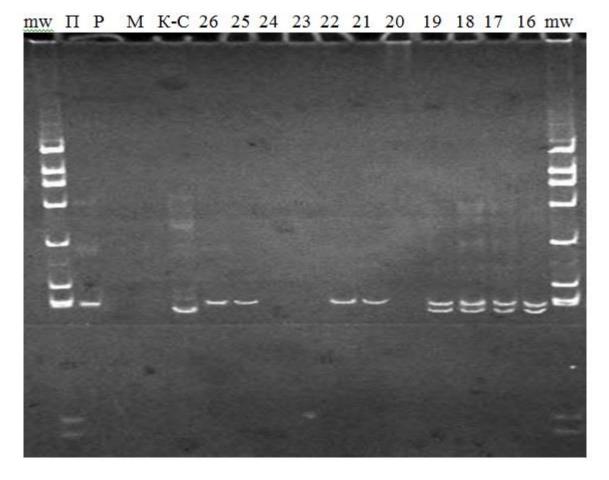


Рисунок Э28 – Визуализация продуктов амплификации SSR-маркера VVMD5

Условные обозначения: 16.Долгожданный Ф, 17. Антоний Великий 30-5, 18.Антоний Великий 30-6, 19. Антоний Великий, 20. Антоний Великий Ф, 21.Аркадия розовая 2-5, 22.Аркадия розовая 2-6, 23. Солярис 10-11, 24.Солярис 11-11, 25. Йоханнитер 10-11, 26. Йоханнитер 11-11.

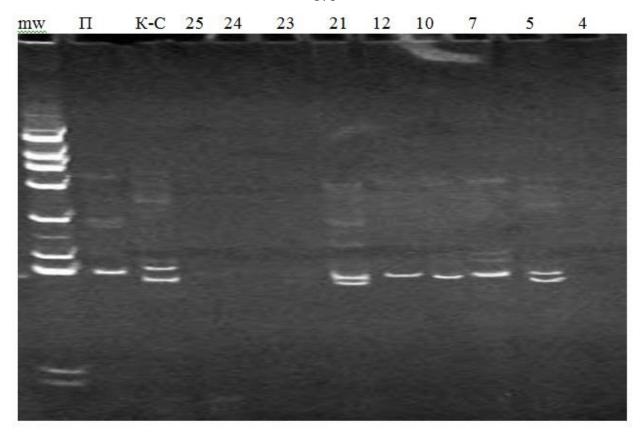


Рисунок Э29 — Визуализация продуктов амплификации SSR-маркера VVMD5

Условные обозначения: 4. Анюта Ф, 5. Ливия 14-6, 7. Ливия, 10. Гелиос 50-6, 12.А кадемик, 21. Аркадия розовая 2-5, 23. Солярис 10-11, 24. Солярис 11-11, 25. Йоханнитер 10-11.



Рисунок Э30 – Визуализация продуктов амплификации SSR-маркера VVMD7

Условные обозначения: 1. Анюта 5-7, 2. Анюта 5-5, 3. Анюта, 4. Анюта Ф, 5. Ливия 14-6, 6. Ливия 14-5, 7. Ливия, 8. Ливия Ф, 9. Гелиос 50-5, 10. Гелиос 50-6, 11. Академический К, 12. Академик, 13. Долгожданный 6-8, 14. Долгожданный 6-9, 15. Долгожданный.

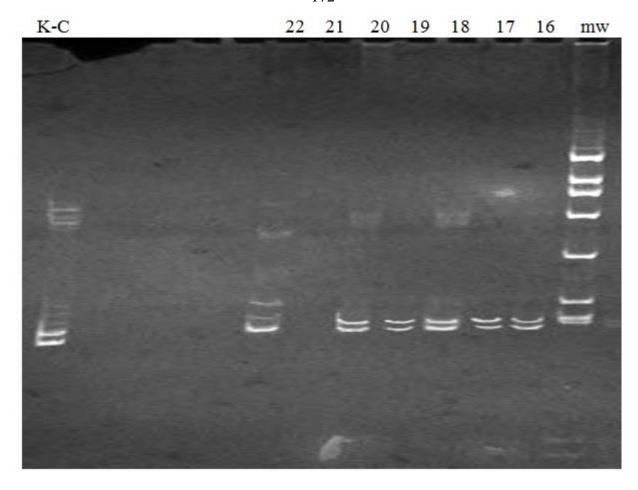


Рисунок Э31 – Визуализация продуктов амплификации SSR-маркера VVMD7

Условные обозначения: 16. Долгожданный Ф, 17. Антоний Великий 30-5, 18. Антоний Великий 30-6, 19. Антоний Великий, 20. Антоний Великий Ф, 21. Аркадия розовая 2-5, 22. Аркадия розовая 2-6.

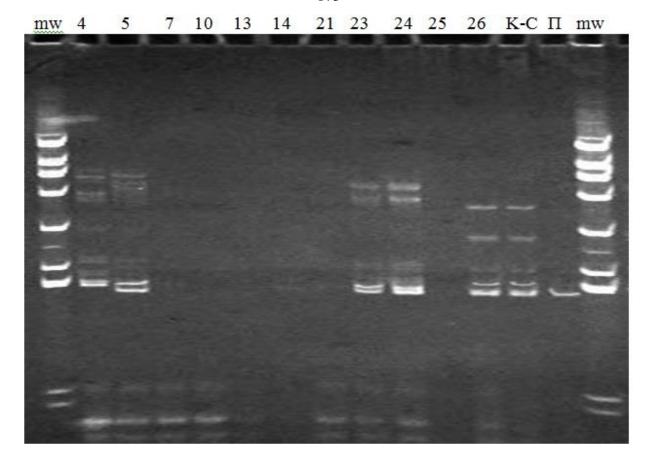


Рисунок Э32 — Визуализация продуктов амплификации SSR-маркера VVMD7

Условные обозначения: 4. Анюта Ф, 5. Ливия 14-6, 7. Ливия, 10. Гелиос 50-6, 13. Долгожданный 6-8, 14. Долгожданный 6-9, 21. Аркадия розовая 2-5, 23. Солярис 10-11, 24. Солярис 11-11, 25. Йоханнитер 10-11, 26. Йоханнитер 11-11.

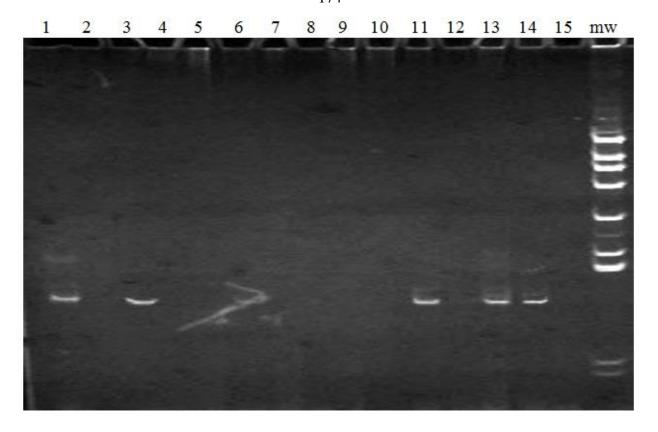


Рисунок Э33 – Визуализация продуктов амплификации SSR-маркера VVMD27

Условные обозначения: 1. Анюта 5-7, 2. Анюта 5-5, 3. Анюта, 4. Анюта Ф, 5. Ливия 14-6, 6. Ливия 14-5, 7. Ливия, 8. Ливия Ф, 9. Гелиос 50-5, 10. Гелиос 50-6, 11. Академический К, 12. Академик, 13. Долгожданный 6-8, 14. Долгожданный 6-9, 15. Долгожданный.

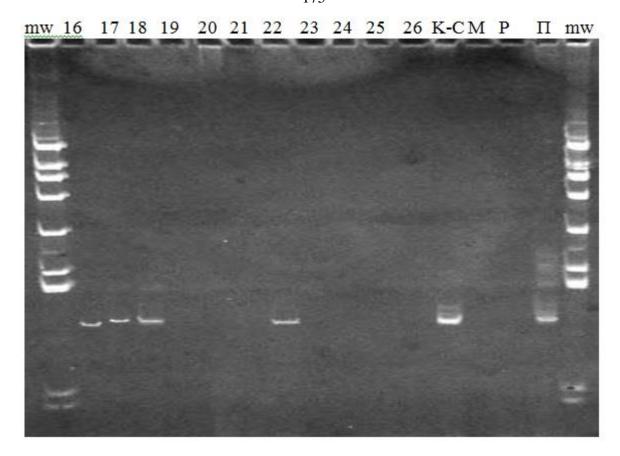


Рисунок Э34 – Визуализация продуктов амплификации SSR-маркера VVMD27

Условные обозначения: 16. Долгожданный Ф, 17. Антоний Великий 30-5, 18. Антоний Великий 30-6, 19. Антоний Великий, 20. Антоний Великий Ф, 21. Аркадия розовая 2-5, 22. Аркадия розовая 2-6, 23. Солярис 10-11, 24. Солярис 11-11, 25. Йоханнитер 10-11, 26. Йоханнитер 11-11.

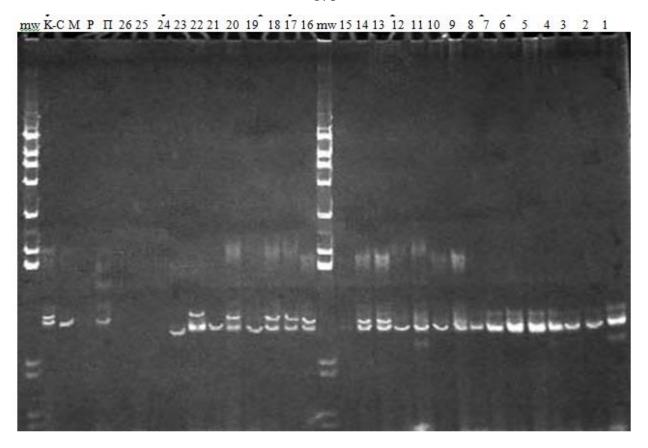


Рисунок Э35 – Визуализация продуктов амплификации SSR-маркера VVS2

Условные обозначения: 1. Анюта 5-7, 2. Анюта 5-5, 3. Анюта, 4. Анюта Ф, 5.Ливия 14-6, 6. Ливия 14-5, 7. Ливия, 8. Ливия Ф, 9. Гелиос 50-5, 10. Гелиос 50-6, 11. Академический К, 12. Академик, 13. Долгожданный 6-8, 14. Долгожданный 6-9, 15. Долгожданный, 16. Долгожданный Ф, 17. Антоний Великий 30-5, 18. Антоний Великий 30-6, 19. Антоний Великий, 20. Антоний Великий Ф, 21. Аркадия розовая 2-5, 22. Аркадия розовая 2-6, 23. Солярис 10-11, 24. Солярис 11-11, 25. Йоханнитер 10-11, 26. Йоханнитер 11-11.

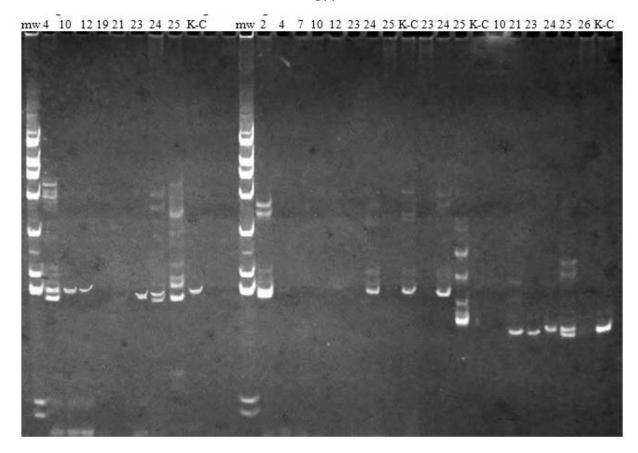


Рисунок Э36 — Визуализация продуктов амплификации SSR-маркеров: VrZag62 (4,10,12,19,21,23,24,25,K-C), VrZag79 (2,4,7,10,12,23,24,25,26,K-C), VVMD5 (23,24,25,K-C), VVMD7 (10,21,23,24,25,26,K-C). В скобках указаны образцы и контрольная ссылка, сорт Каберне Совиньон

Условные обозначения: 1. Анюта 5-7, 2. Анюта 5-5, 3. Анюта, 4. Анюта Ф, 5. Ливия 14-6, 6.Ливия 14-5, 7. Ливия, 8. Ливия Ф, 9. Гелиос 50-5, 10. Гелиос 50-6, 11. Академический К, 12.Академик, 13. Долгожданный 6-8, 14. Долгожданный 6-9, 15. Долгожданный, 16. Долгожданный Ф, 17. Антоний Великий 30-5, 18. Антоний Великий 30-6, 19. Антоний Великий, 20. Антоний Великий Ф, 21. Аркадия розовая 2-5, 22. Аркадия розовая 2-6, 23. Солярис 10-11, 24. Солярис 11-11, 25. Йоханнитер 10-11, 26. Йоханнитер 11-11.

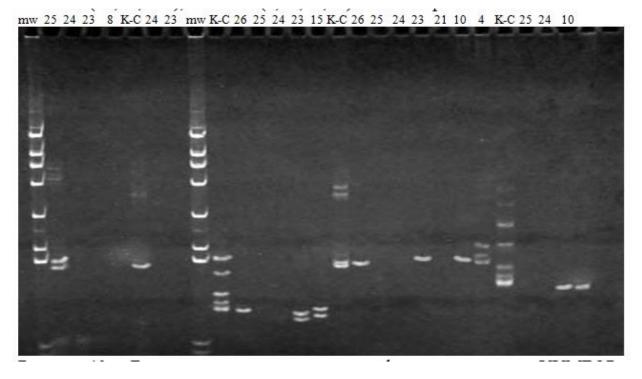


Рисунок ЭЗ7 — Визуализация продуктов амплификации SSR-маркеров: VrZag62 (10,24,25,K-C), VrZag79 (4,10,21,23,24,25,26,K-C), VVS2 (15,23,24,25,26,K-C), VVMD5 (23,24,K-C), VVMD7 (8,23,24,25). Читать справа налево

Условные обозначения: 1. Анюта 5-7, 2. Анюта 5-5, 3. Анюта, 4. Анюта Ф, 5. Ливия 14-6, 6.Ливия 14-5, 7. Ливия, 8. Ливия Ф, 9. Гелиос 50-5, 10. Гелиос 50-6, 11. Академический К, 12. Академик, 13. Долгожданный 6-8, 14. Долгожданный 6-9, 15. Долгожданный, 16. Долгожданный Ф, 17. Антоний Великий 30-5, 18. Антоний Великий 30-6, 19. Антоний Великий, 20. Антоний Великий Ф, 21. Аркадия розовая 2-5, 22. Аркадия розовая 2-6, 23. Солярис 10-11, 24. Солярис 11-11, 25. Йоханнитер 10-11, 26. Йоханнитер 11-11.

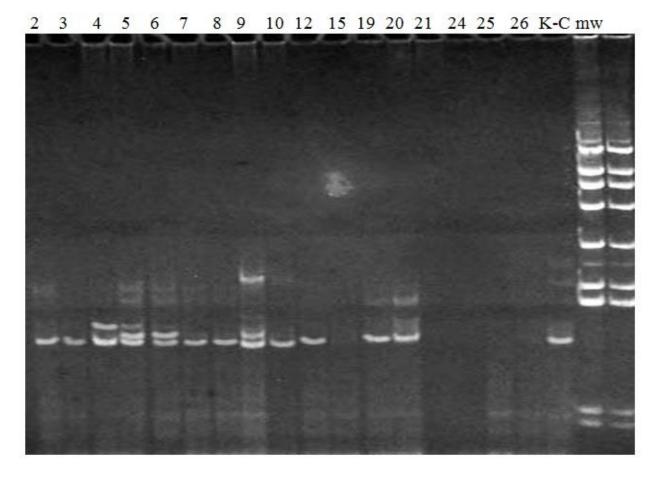


Рисунок Э38 – Визуализация продуктов амплификации SSR-маркера VVMD27

Условные обозначения: 2. Анюта 5-5, 3. Анюта, 4. Анюта Ф, 5. Ливия 14-6, 6. Ливия 14-5, 7. Ливия, 8. Ливия Ф, 9. Гелиос 50-5, 10. Гелиос 50-6, 15. Долгожданный, 19. Антоний Великий, 20. Антоний Великий Ф, 21. Аркадия розовая 2-5, 24. Солярис 11-11, 25. Йоханнитер 10-11, 26. Йоханнитер 11-11.

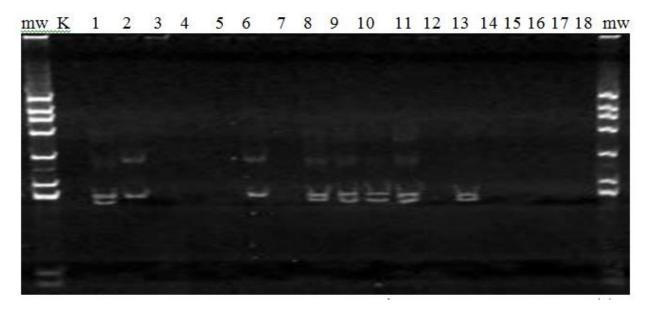


Рисунок ЭЗ9 — Визуализация продуктов амплификации SSR-маркера VVMD5

Условные обозначения: 1. Супер экстра 21 куст, 2. Супер экстра 9 куст, 3. Гелиос 9 куст, 4. Гелиос 16 куст, 5. Богатянский 6 куст, 6. Богатянский 9 куст, 7. Аркадия розовая 4 куст, 8. Аркадия розовая 10 куст, 9. Анюта 5 куст, 10. Анюта 19 куст, 11. Виктор 7 куст, 12. Виктор 5 куст, 13. Преображение 15 куст, 14. Преображение 5 куст, 15. Первозванный 4 куст, 16. Первозванный 6 куст, 17. Монарх 13 куст, 18. Монарх 1 куст.

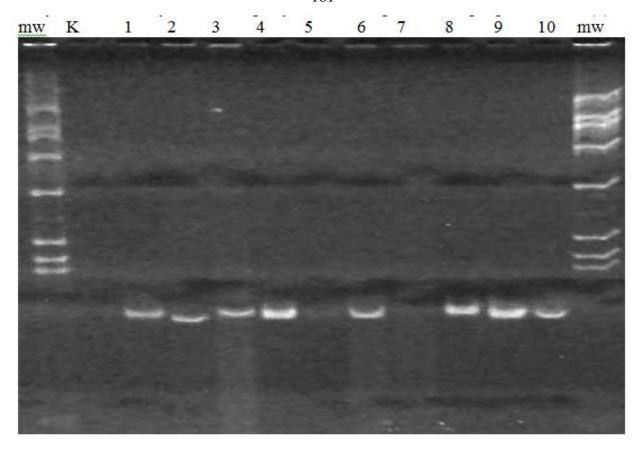


Рисунок Э40 — Визуализация продуктов амплификации SSR-маркера VVMD7

Условные обозначения: 1. Супер экстра 21 куст, 2. Супер экстра 9 куст, 3. Гелиос 9 куст, 4. Гелиос 16 куст, 5. Богатянский 6 куст, 6. Богатянский 9 куст, 7. Аркадия розовая 4 куст, 8. Аркадия розовая 10 куст, 9. Анюта 5 куст, 10. Анюта 19 куст.

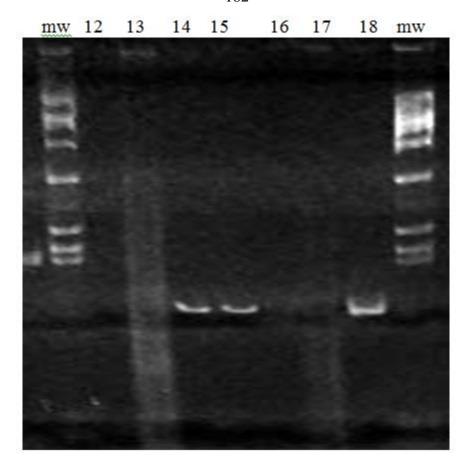


Рисунок Э41 — Визуализация продуктов амплификации SSR-маркера VVMD7

Условные обозначения:11. Виктор 7 куст, 12. Виктор 5 куст, 13. Преображение 15 куст, 14. Преображение 5 куст, 15. Первозванный 4 куст, 16. Первозванный 6 куст, 17. Монарх 13 куст, 18. Монарх 1 куст.

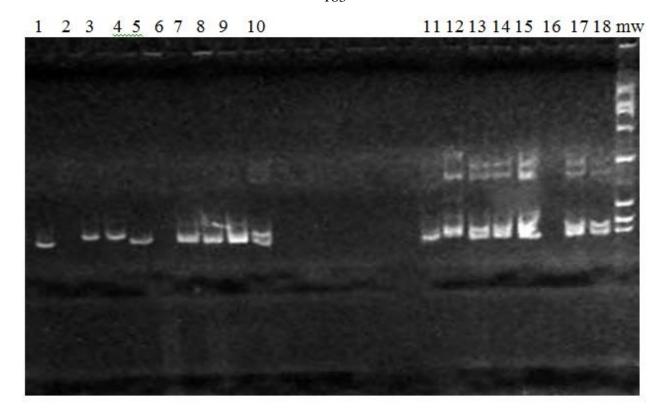


Рисунок Э42 – Визуализация продуктов амплификации SSR-маркера VVMD27

Условные обозначения: 1. Супер экстра 21 куст, 2. Супер экстра 9 куст, 3. Гелиос 9 куст, 4. Гелиос 16 куст, 5. Богатянский 6 куст, 6. Богатянский 9 куст, 7. Аркадия розовая 4 куст, 8. Аркадия розовая 10 куст, 9. Анюта 5 куст, 10. Анюта 19 куст, 11. Виктор 7 куст, 12. Виктор 5 куст, 13. Преображение 15 куст, 14. Преображение 5 куст, 15. Первозванный 4 куст, 16. Первозванный 6 куст, 17. Монарх 13 куст, 18. Монарх 1 куст.

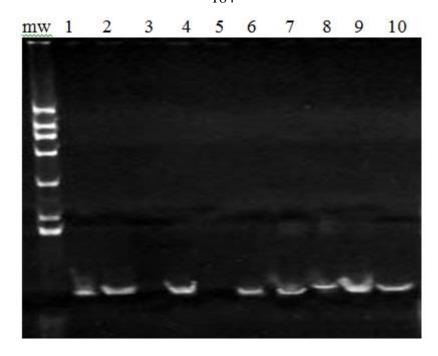


Рисунок Э43 — Визуализация продуктов амплификации SSR-маркера VVS2

Условные обозначения: 1. Супер экстра 21 куст, 2. Супер экстра 9 куст, 3. Гелиос 9 куст, 4. Гелиос 16 куст, 5. Богатянский 6 куст, 6. Богатянский 9 куст, 7. Аркадия розовая 4 куст, 8. Аркадия розовая 10 куст, 9. Анюта 5 куст, 10. Анюта 19 куст.

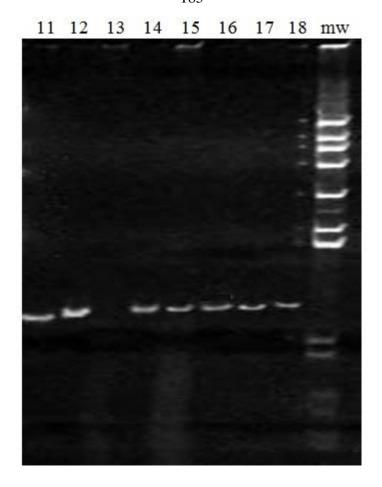


Рисунок Э44 — Визуализация продуктов амплификации SSR-маркера VVS2

Условные обозначения: 11. Виктор 7 куст, 12. Виктор 5 куст, 13. Преображение 15 куст, 14. Преображение 5 куст, 15. Первозванный 4 куст, 16. Первозванный 6 куст, 17. Монарх 13 куст, 18. Монарх 1 куст.

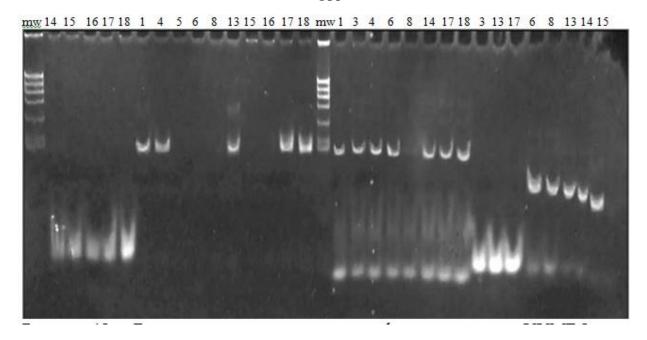


Рисунок Э45 — Визуализация продуктов амплификации SSR-маркеров: VrZag79 (14, 15, 16, 17, 18), VVMD5 (1, 4, 5, 6, 8, 13, 15, 16, 17, 18), VVMD7 (1, 3, 4, 6, 8, 14, 17, 18), VVMD27 (3, 13, 17), VVS2 (6, 8, 13, 14, 15)

Условные обозначения: 1. Супер экстра 21 куст, 2. Супер экстра 9 куст, 3. Гелиос 9 куст, 4. Гелиос 16 куст, 5. Богатянский 6 куст, 6. Богатянский 9 куст, 7. Аркадия розовая 4 куст, 8. Аркадия розовая 10 куст, 9. Анюта 5 куст, 10. Анюта 19 куст, 11. Виктор 7 куст, 12. Виктор 5 куст, 13. Преображение 15 куст, 14. Преображение 5 куст, 15. Первозванный 4 куст, 16. Первозванный 6 куст, 17. Монарх 13 куст, 18. Монарх 1 куст.

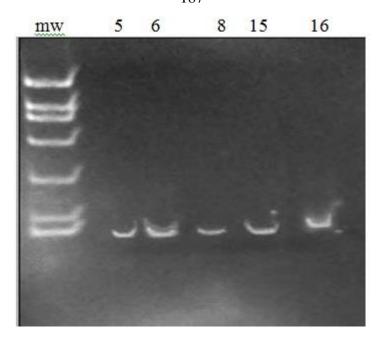


Рисунок Э46 — Визуализация продуктов амплификации SSR-маркера VVMD5

Условные обозначения: 5. Богатянский 6 куст, 6. Богатянский 9 куст, 8. Аркадия розовая 10 куст, 15. Первозванный 4 куст, 16. Первозванный 6 куст.

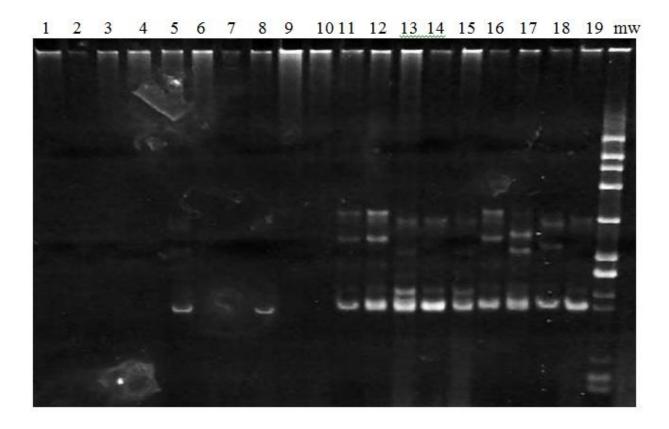


Рисунок Э47 – Визуализация продуктов амплификации SSR-маркера VrZag62

Условные обозначения: 1. 3 кл 2 ряд Монарх, 2. 2кл 2 ряд Богатяновский, 3. 1 кл 2 ряд Аркадия Розовая, 4. 3 кл 2 ряд Низина, 5. Низина 3 кл 2 ряд, 6. 3 кл 1 ряд Супер Экстра, 7. 3 кл 7 ряд Юбилей Новочеркасска, 8. 3 кл 10 ряд Первозванный, 9. Пино гри 46 куст 1, 10. Пино гри 46 куст 2, 11. Пино гри 46 куст 3, 12. 3 кл 2 ряд Преображение, 13. 3 кл 50 ряд Гелиос, 14. 3 кл 31 ряд Гурман ранний, 15. 3 кл 5 ряд Анюта, 16. 3 кл 29 ряд Виктор, 17. 3 кл 6 ряд Долгожданный, 18.3 кл 6 ряд 342, 19.3 кл 14 ряд Ливия.

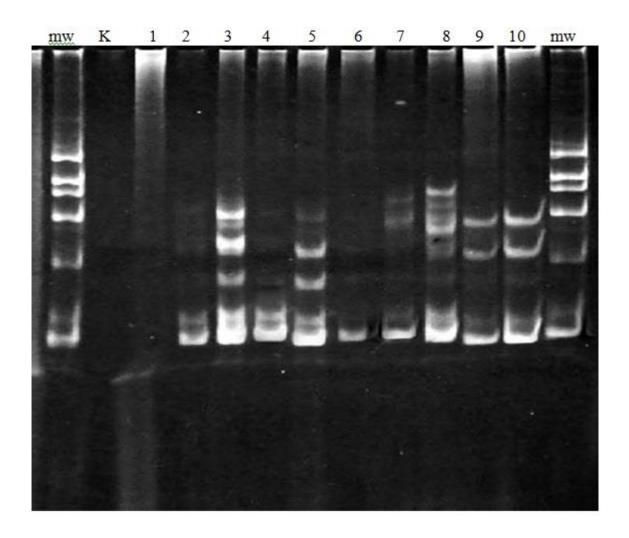


Рисунок Э48 – Визуализация продуктов амплификации SSR-маркера VrZag79

Условные обозначения: 1. 3 кл 2 ряд Монарх, 2. 2кл 2 ряд Богатяновский, 3. 1 кл 2 ряд Аркадия Розовая, 4. 3 кл 2 ряд Низина, 5. Низина 3 кл 2 ряд, 6. 3 кл 1 ряд Супер Экстра, 7. 3 кл 7 ряд Юбилей Новочеркасска, 8. 3 кл 10 ряд Первозванный, 9. Пино гри 46 куст 1, 10. Пино гри 46 куст 2.

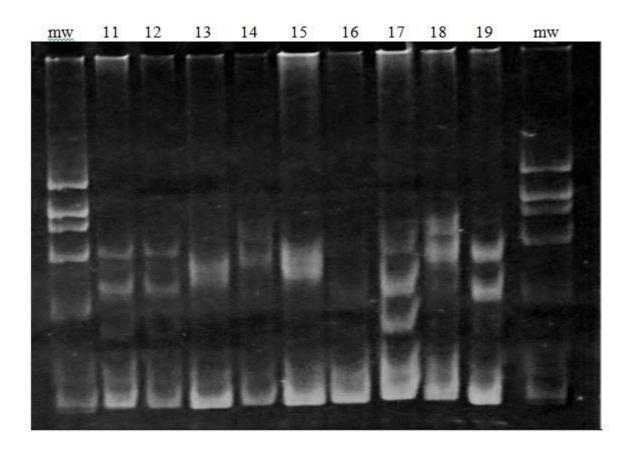


Рисунок Э49 – Визуализация продуктов амплификации SSR-маркера VrZag79

Условные обозначения: 11. Пино гри 46 куст 3, 12. 3 кл 2 ряд Преображение, 13. 3 кл 50 ряд Гелиос, 14. 3 кл 31 ряд Гурман ранний, 15. 3 кл 5 ряд Анюта, 16. 3 кл 29 ряд Виктор, 17. 3 кл 6 ряд Долгожданный, 18.3 кл 6 ряд 342, 19.3 кл 14 ряд Ливия.



Рисунок Э50 – Визуализация продуктов амплификации SSR-маркера VVMD5

Условные обозначения: 1. 3 кл 2 ряд Монарх, 2. 2кл 2 ряд Богатяновский, 3. 1 кл 2 ряд Аркадия Розовая, 4. 3 кл 2 ряд Низина,5. Низина 3 кл 2 ряд, 6. 3 кл 1 ряд Супер Экстра, 7. 3 кл 7 ряд Юбилей Новочеркасска, 8. 3 кл 10 ряд Первозванный, 9. Пино гри 46 куст 1, 10. Пино гри 46 куст 2, 11. Пино гри 46 куст 3, 12. 3 кл 2 ряд Преображение, 13. 3 кл 50 ряд Гелиос, 14. 3 кл 31 ряд Гурман ранний, 15. 3 кл 5 ряд Анюта, 16. 3 кл 29 ряд Виктор, 17. 3 кл 6 ряд Долгожданный, 18.3 кл 6 ряд 342, 19.3 кл 14 ряд Ливия.

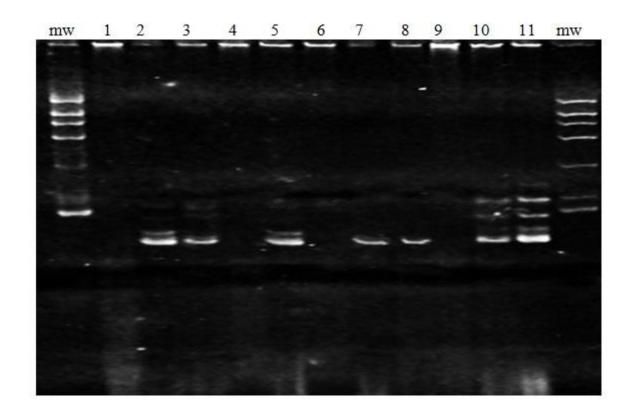


Рисунок Э51 — Визуализация продуктов амплификации SSR-маркера VVMD7

Условные обозначения: 1. 3 кл 2 ряд Монарх, 2. 2кл 2 ряд Богатяновский, 3. 1 кл 2 ряд Аркадия Розовая, 4. 3 кл 2 ряд Низина,5. Низина 3 кл 2 ряд, 6. 3 кл 1 ряд Супер Экстра, 7. 3 кл 7 ряд Юбилей Новочеркасска, 8. 3 кл 10 ряд Первозванный, 9. Пино гри 46 куст 1, 10. Пино гри 46 куст 2, 11. Пино гри 46 куст 3.

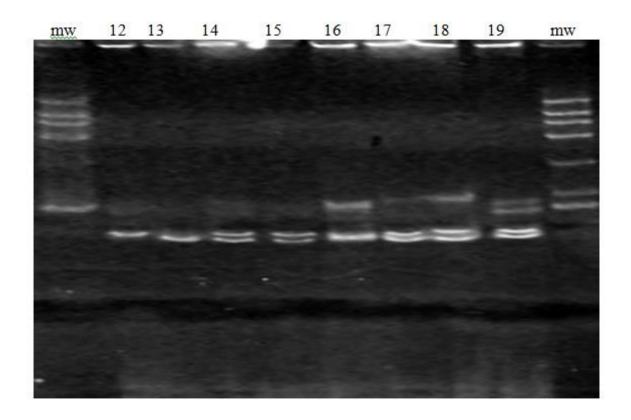


Рисунок Э52 — Визуализация продуктов амплификации SSR-маркера VVMD7

Условные обозначения: 12. 3 кл 2 ряд Преображение, 13. 3 кл 50 ряд Гелиос, 14. 3 кл 31 ряд Гурман ранний, 15. 3 кл 5 ряд Анюта, 16. 3 кл 29 ряд Виктор, 17. 3 кл 6 ряд Долгожданный, 18.3 кл 6 ряд 342, 19.3 кл 14 ряд Ливия.

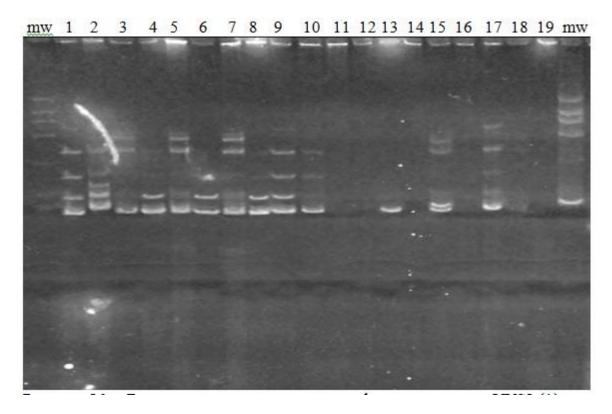


Рисунок Э53 – Визуализация продуктов амплификации SSR-маркера VVMD27

Условные обозначения: 1. 3 кл 2 ряд Монарх, 2. 2кл 2 ряд Богатяновский, 3. 1 кл 2 ряд Аркадия Розовая, 4. 3 кл 2 ряд Низина,5. Низина 3 кл 2 ряд, 6. 3 кл 1 ряд Супер Экстра, 7. 3 кл 7 ряд Юбилей Новочеркасска, 8. 3 кл 10 ряд Первозванный, 9. Пино гри 46 куст 1, 10. Пино гри 46 куст 2, 11. Пино гри 46 куст 3, 12. 3 кл 2 ряд Преображение, 13. 3 кл 50 ряд Гелиос, 14. 3 кл 31 ряд Гурман ранний, 15. 3 кл 5 ряд Анюта, 16. 3 кл 29 ряд Виктор, 17. 3 кл 6 ряд Долгожданный, 18.3 кл 6 ряд 342, 19.3 кл 14 ряд Ливия.

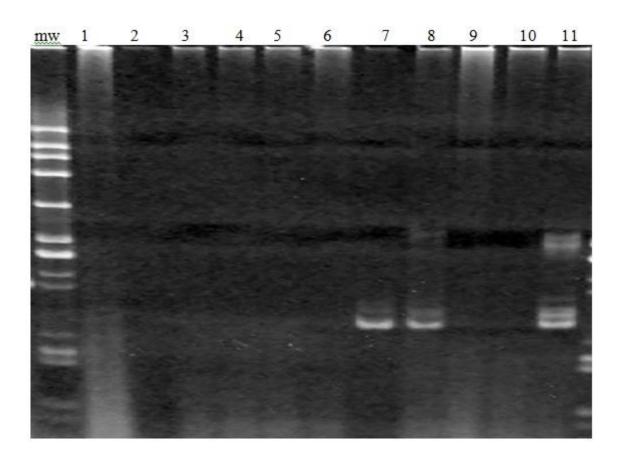


Рисунок Э54 – Визуализация продуктов амплификации SSR-маркера VVS2

Условные обозначения: 1. 3 кл 2 ряд Монарх, 2. 2кл 2 ряд Богатяновский, 3. 1 кл 2 ряд Аркадия Розовая, 4. 3 кл 2 ряд Низина,5. Низина 3 кл 2 ряд, 6. 3 кл 1 ряд Супер Экстра, 7. 3 кл 7 ряд Юбилей Новочеркасска, 8. 3 кл 10 ряд Первозванный, 9. Пино гри 46 куст 1, 10. Пино гри 46 куст 2, 11. Пино гри 46 куст 3.

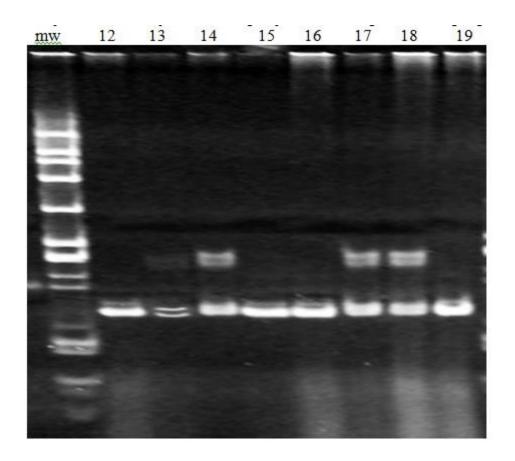


Рисунок Э55 – Визуализация продуктов амплификации SSR-маркера VVS2

Условные обозначения: 12. 3 кл 2 ряд Преображение, 13. 3 кл 50 ряд Гелиос, 14. 3 кл 31 ряд Гурман ранний, 15. 3 кл 5 ряд Анюта, 16. 3 кл 29 ряд Виктор, 17. 3 кл 6 ряд Долгожданный, 18.3 кл 6 ряд 342, 19.3 кл 14 ряд Ливия.

Приложение Ю

Таблицы аллельных состояний генотипов аборигенных сортов

Таблица Ю1 – Аллельное состояние генов среди аборигенных сортов

№ п/п	Название сорта	VrZAG47	VrZAG47	VVS2	VVS2	VVMD7	VVMD7	VVMD5	VVMD5	VrZag62	VrZag62	VrZag79	VrZag79
1	Абинск № 3	186	190	133	153	239	239	234	236	192	200	251	251
2	Абинск № 5	216	218	135	143	245	245	232	254	190	190	255	259
3	Абинск№ 6	184	186	125	151	239	249	230	230	194	196	251	251
4	Абинск № 7	218	218	135	145	245	245	266	266	190	190	259	261
5	Абинск № 8	218	224	133	145	229	229	268	268	214	214	Н/Д	Н/Д
6	Абинск № 9	212	218	135	143	251	251	264	268	188	188	249	255
7	Аджем мискет	182	188	143	145	239	239	242	248	188	196	251	251
8	Аг изюм	180	195	135	145	249	249	230	238	200	202	255	257
9	Аккерманский черный	182	195	133	143	239	249	240	248	188	202	249	259
10	Аклык желтый	195	195	143	145	239	249	236	238	188	200	257	259
11	Аленький	180	195	133	135	239	249	228	230	186	196	249	255
12	Алый терский	182	195	135	143	245	249	238	238	196	200	251	259
13	Амет аджи ибрам	180	182	143	143	239	239	236	248	188	194	237	237
14	Асма	186	195	149	151	243	247	234	242	192	196	239	243
15	Байат капи	182	182	135	145	239	243	236	242	188	204	259	259
16	Богос зерва	182	182	145	149	239	239	240	248	200	204	239	249
17	Бор кара	176	186	141	143	239	253	238	242	200	202	237	243
18	Борю изюм	190	195	135	137	239	249	236	236	188	200	243	257
19	Брусковатенький	180	182	129	143	239	243	230	238	184	188	247	259
20	Будай шули	180	186	141	143	239	247	238	238	202	204	249	251
21	Буланый белый	180	184	133	145	239	239	240	242	188	204	239	251
22	Чауш чабан	180	190	135	143	243	247	230	240	200	204	249	259

Таблица Ю2 – Аллельное состояние генов среди аборигенных сортов

№ п/п	Название сорта	VrZAG47	VrZAG47	VVS2	VVS2	VVMD7	VVMD7	VVMD5	VVMD5	VrZag62	VrZag62	VrZag79	VrZag79
23	Чолбер	180	182	133	135	239	247	238	242	200	204	245	251
24	Чоркутца розове	182	195	133	135	239	239	230	248	188	196	249	259
25	Даманка 1	188	190	133	155	239	239	230	232	194	194	251	255
26	Даманка 7	190	195	133	149	263	263	230	230	Н/Д	Н/Д	Н/Д	Н/Д
27	Демир кара	180	188	135	145	239	253	234	242	188	200	239	251
28	Докур	186	186	135	151	249	249	230	236	196	200	251	251
29	Дубут шире цпитс	182	195	135	145	239	259	230	236	188	196	251	259
30	Джагар	182	186	135	143	245	259	236	236	196	196	251	259
31	Джеват кара	180	184	143	145	239	249	230	238	192	204	249	251
32	Джунга	182	195	135	137	239	239	230	240	188	190	251	259
33	Джварк	180	195	135	141	249	259	236	242	196	200	237	251
34	Ефремовский	180	180	133	135	249	249	238	240	186	188	247	255
35	Ефремовский второй	180	180	133	143	239	247	240	248	188	204	237	251
36	Емчек изюм	186	195	135	143	249	249	226	238	200	200	251	257
37	Галабура	180	186	143	143	239	239	228	234	188	188	239	251
38	Гендерил цибил	180	186	145	145	245	249	Н/Д	Н/Д	194	202	239	251
39	Гок ала	180	186	135	143	235	235	234	238	194	200	249	251
40	Гор. Ключ 1 новый	188	188	133	151	239	263	230	230	194	194	251	251
41	Гюляби белый	195	195	135	143	245	249	236	238	196	200	251	257
42	Гюляби дагестанский	182	195	135	137	239	249	230	236	188	200	257	259
43	Ири тумут	186	195	135	143	233	245	236	236	188	196	251	251
44	Кабассия	186	195	133	143	239	249	234	248	188	204	249	251

Таблица ЮЗ – Аллельное состояние генов среди аборигенных сортов

№ п/п	Название сорта	VrZAG47	VrZAG47	VVS2	VVS2	VVMD7	VVMD7	VVMD5	VVMD5	VrZag62	VrZag62	VrZag79	VrZag79
45	Кайтаги	182	190	135	143	235	249	242	242	194	194	251	259
46	Кандаваста	182	188	143	145	239	249	230	248	196	202	251	259
47	Кечи эмчек черный	184	184	Н/Д	Н/Д	239	239	230	248	200	204	239	249
48	Хади тумут	180	195	135	137	247	259	230	240	190	196	251	255
49	Халили изюм	188	190	145	145	239	249	230	248	194	196	243	251
50	Харко	180	184	133	145	239	239	240	242	188	204	239	251
51	Хатал баар	190	193	143	145	239	245	242	242	202	202	239	243
52	Хатми	186	195	135	143	249	249	226	238	200	200	251	257
53	Херсонесский	182	188	143	145	239	263	230	234	178	194	233	251
54	Хоп халат	182	193	133	143	239	247	238	242	202	204	239	245
55	Хотса цибил	188	190	135	143	239	243	230	242	196	200	243	251
56	Хруптун белый	182	184	143	143	239	239	230	240	188	204	239	259
57	Кизиловый	180	188	133	137	239	251	238	248	188	200	251	251
58	Кизлярский синий	193	195	135	135	239	249	230	238	188	200	257	261
59	Кода гросса	182	195	143	143	249	253	230	236	200	204	243	257
60	Кок ала	180	186	135	143	235	249	234	238	194	200	249	251
61	Кок хабах	184	186	137	149	249	253	230	240	184	200	249	251
62	Кокурдес белый	186	188	137	145	243	249	238	240	194	200	251	251
63	Кокурдес черный	180	182	137	143	Н/Д	Н/Д	238	242	196	200	247	259
64	Красностоп анапский	190	190	133	145	239	265	224	248	188	196	243	255
65	Красностоп золотовский	190	190	133	145	239	265	224	248	188	196	243	255
66	Краснянский	180	190	133	141	247	249	234	242	200	204	239	239

Таблица Ю4 – Аллельное состояние генов среди аборигенных сортов

№ п/п	Название сорта	VrZAG47	VrZAG47	VVS2	VVS2	VVMD7	VVMD7	VVMD5	VVMD5	VrZag62	VrZag62	VrZag79	VrZag79
67	Крестовский	186	190	135	135	249	249	234	236	200	202	251	259
68	Кукан цибил	182	193	133	143	239	247	236	240	202	204	239	245
69	Кукановский	188	190	143	145	249	265	230	238	194	196	251	255
70	Кумшатский белый	186	195	145	145	239	247	236	238	194	194	251	259
71	Латсу кере	186	190	125	137	247	249	240	242	190	194	237	251
72	Лесной белый марагинский	180	195	135	143	247	259	226	236	190	196	255	257
73	Лизи хутсран	182	190	135	143	235	239	230	238	188	194	243	259
74	Майкоп № 1	184	184	133	151	239	249	230	230	194	194	237	251
75	Майкоп № 2	184	184	133	151	239	249	230	230	194	194	237	251
76	Майкоп № 3	184	184	133	151	239	249	230	230	194	194	237	251
77	Майкоп № 4	180	190	133	151	233	239	230	230	194	204	249	251
78	Майкоп № 5	184	184	133	151	239	239	230	230	194	194	237	251
79	Майкоп № 7	184	190	151	151	239	249	230	230	194	196	251	251
80	Махбор цибил	193	195	135	145	239	245	230	234	188	202	251	261
81	Мисгюли кара	182	184	145	149	249	253	238	248	192	200	249	259
82	Мола гусейн цибил	182	186	135	145	245	249	238	238	200	202	251	259
83	Мствивани мескхури	186	195	135	143	247	249	238	242	188	194	251	257
84	Нарма	184	195	135	149	249	249	236	238	188	196	249	251
85	Пухляковский	180	182	133	143	239	239	240	248	188	188	251	259
86	Риш баба	182	186	139	151	249	249	226	236	196	204	251	259
87	Риш баба розовый	182	184	145	149	249	253	238	248	192	200	249	259
88	Сафта дурмаз	180	195	135	141	239	247	236	236	190	200	243	249

Таблица Ю5 – Аллельное состояние генов среди аборигенных сортов

№ п/п	Название сорта	VrZAG47	VrZAG47	VVS2	VVS2	VVMD7	VVMD7	VVMD5	VVMD5	VrZag62	VrZag62	VrZag79	VrZag79
89	Сары кокур	184	186	143	143	239	249	230	238	188	200	243	251
90	Сары пандас	182	188	147	151	249	249	230	240	194	202	251	259
91	Шабаш	180	186	131	143	239	253	238	240	188	204	251	257
92	Шампанчик	182	186	135	135	239	249	230	238	202	202	Н/Д	Н/Д
93	Шампанчик бессергеневский	180	180	143	145	245	245	238	242	188	204	257	257
94	Шавбарда	186	190	137	143	249	249	234	236	196	204	251	253
95	Шавраны	182	195	135	143	245	249	238	238	196	200	251	259
96	Шилохвостый	186	195	133	145	249	251	234	248	200	204	251	251
97	Сибирьковый	180	182	133	143	239	239	230	240	188	188	251	259
98	Тавлинский черный	182	186	135	143	235	247	230	238	Н/Д	Н/Д	251	259
99	Тавлинский поздний	182	193	143	143	239	245	238	242	202	202	239	259
100	Толстокорый	182	186	135	135	249	249	230	238	200	202	251	259
101	Цимлянский белый	180	186	123	151	235	249	230	240	202	204	237	247
102	Тумут кара	182	190	135	143	Н/Д	Н/Д	230	242	188	194	251	251
103	Турба плотная белая	186	195	135	155	239	239	228	236	188	196	249	259
104	Варюшкин	186	195	133	143	239	245	Н/Д	Н/Д	192	202	249	251
105	Йай изюм белый	180	182	125	145	249	259	236	242	194	196	251	259
106	Яных зерва	186	186	145	155	239	247	238	242	188	204	Н/Д	Н/Д
107	Желудёвый	190	192	135	143	231	239	228	230	194	220	255	259

Таблица Ю6 – Аллельное состояние генов среди аборигенных сортов

№ п/п	Название сорта	VVMD28	VVMD28	VVMD32	VVMD32	VVMD25	VVMD25
1	Абинск № 3	Н/Д	Н/Д	248	248	Н/Д	Н/Д
2	Абинск № 5	Н/Д	Н/Д	264	264	239	239
3	Абинск№ 6	Н/Д	Н/Д	250	264	249	267
4	Абинск № 7	234	242	Н/Д	Н/Д	235	239
5	Абинск № 8	Н/Д	Н/Д	226	278	239	243
6	Абинск № 9	234	242	Н/Д	Н/Д	239	267
7	Аджем мискет	236	258	250	262	241	255
8	Аг изюм	240	258	244	272	241	241
9	Аккерманский черный	228	248	252	272	239	249
10	Аклык желтый	244	278	250	272	239	241
11	Аленький	236	246	264	272	249	255
12	Алый терский	244	248	256	272	241	255
13	Амет аджи ибрам	Н/Д	Н/Д	250	250	249	255
14	Асма	234	258	250	272	249	249
15	Байат капи	234	240	250	256	239	241
16	Богос зерва	236	258	252	262	245	255
17	Бор кара	236	236	250	272	241	267
18	Борю изюм	234	244	272	272	241	241
19	Брусковатенький	244	244	240	258	237	255
20	Будай шули	234	272	250	258	239	255
21	Буланый белый	234	258	262	272	249	255
22	Чауш чабан	218	236	240	272	255	255

Таблица Ю7 – Аллельное состояние генов среди аборигенных сортов

$N\!$	Название сорта	VVMD28	VVMD28	VVMD32	VVMD32	VVMD25	VVMD25
23	Чолбер	Н/Д	Н/Д	256	262	255	255
24	Чоркутца розове	236	248	256	264	239	255
25	Даманка 1	228	236	240	240	Н/Д	Н/Д
26	Даманка 7	228	236	240	248	249	249
27	Демир кара	258	258	250	272	241	249
28	Докур	236	258	250	272	245	249
29	Дубут шире цпитс	240	248	244	250	239	241
30	Джагар	234	258	250	272	241	255
31	Джеват кара	236	258	262	272	241	255
32	Джунга	240	258	244	262	239	255
33	Джварк	236	258	250	262	239	267
34	Ефремовский	234	246	272	272	241	255
35	Ефремовский второй	234	260	252	264	239	249
36	Емчек изюм	258	260	250	272	241	255
37	Галабура	236	246	252	252	239	249
38	Гендерил цибил	Н/Д	Н/Д	250	252	241	241
39	Гок ала	234	258	252	272	241	255
40	Гор. Ключ 1 новый	236	264	248	250	239	249
41	Гюляби белый	234	234	252	252	241	241
42	Гюляби дагестанский	236	258	256	272	239	239
43	Ири тумут	236	258	Н/Д	Н/Д	241	255
44	Кабассия	234	236	252	252	239	249

Таблица Ю8 – Аллельное состояние генов среди аборигенных сортов

№ п/п	Название сорта	VVMD28	VVMD28	VVMD32	VVMD32	VVMD25	VVMD25
45	Кайтаги	244	248	240	256	239	255
46	Кандаваста	248	258	250	272	241	249
47	Кечи эмчек черный	236	258	252	262	245	255
48	Хади тумут	240	258	244	250	Н/Д	Н/Д
49	Халили изюм	258	258	258	262	241	255
50	Харко	234	258	262	272	249	255
51	Хатал баар	236	248	252	262	241	255
52	Хатми	258	258	250	272	241	255
53	Херсонесский	236	258	240	256	255	255
54	Хоп халат	236	258	256	256	255	255
55	Хотса цибил	Н/Д	Н/Д	250	252	255	255
56	Хруптун белый	236	236	250	264	249	255
57	Кизиловый	248	258	272	272	239	241
58	Кизлярский синий	244	258	252	272	241	255
59	Кода гросса	228	248	264	272	255	257
60	Кок ала	234	258	252	272	241	255
61	Кок хабах	236	258	252	256	241	241
62	Кокурдес белый	258	258	250	256	239	241
63	Кокурдес черный	258	258	Н/Д	Н/Д	241	249
64	Красностоп анапский	236	244	248	252	239	249
65	Красностоп золотовский	236	244	248	252	239	249
66	Краснянский	228	236	254	262	239	267

Таблица Ю9 – Аллельное состояние генов среди аборигенных сортов

№ п/п	Название сорта	VVMD28	VVMD28	VVMD32	VVMD32	VVMD25	VVMD25
67	Крестовский	Н/Д	Н/Д	264	268	241	241
68	Кукан цибил	236	258	256	256	255	255
69	Кукановский	248	258	250	252	255	255
70	Кумшатский белый	Н/Д	Н/Д	240	240	239	241
71	Латсу кере	Н/Д	Н/Д	252	272	239	241
72	Лесной белый марагинский	236	260	244	250	239	255
73	Лизи хутсран	240	244	244	272	239	255
74	Майкоп № 1	254	264	248	250	249	267
75	Майкоп № 2	254	264	248	250	249	267
76	Майкоп № 3	254	264	248	250	249	267
77	Майкоп № 4	258	264	240	248	249	255
78	Майкоп № 5	254	264	248	250	249	267
79	Майкоп № 7	248	264	250	250	249	267
80	Махбор цибил	244	276	252	256	241	255
81	Мисгюли кара	236	258	252	272	241	245
82	Мола гусейн цибил	248	258	250	272	241	241
83	Мствивани мескхури	236	258	252	258	239	255
84	Нарма	236	258	244	244	241	249
85	Пухляковский	234	236	236	240	239	249
86	Риш баба	236	246	250	272	249	255
87	Риш баба розовый	236	258	252	272	241	245
88	Сафта дурмаз	236	258	250	272	239	255

Таблица Ю10 – Аллельное состояние генов среди аборигенных сортов

№ п/п	Название сорта	VVMD28	VVMD28	VVMD32	VVMD32	VVMD25	VVMD25
89	Сары кокур	258	258	262	272	255	255
90	Сары пандас	258	258	250	262	245	255
91	Шабаш	258	278	252	272	249	255
92	Шампанчик	240	258	Н/Д	Н/Д	239	267
93	Шампанчик бессергеневский	258	270	252	252	239	241
94	Шавбарда	234	248	258	262	239	255
95	Шавраны	244	248	256	272	241	255
96	Шилохвостый	258	258	272	272	239	241
97	Сибирьковый	234	258	262	264	239	255
98	Тавлинский черный	234	243	256	272	241	255
99	Тавлинский поздний	236	240	256	262	239	255
100	Толстокорый	240	258	244	272	239	241
101	Цимлянский белый	226	236	248	272	241	249
102	Тумут кара	Н/Д	Н/Д	240	256	255	255
103	Турба плотная белая	228	246	272	272	239	255
104	Варюшкин	248	258	252	252	239	241
105	Йай изюм белый	240	258	244	262	241	241
106	Яных зерва	236	244	272	272	241	245
107	Желудёвый	242	268	240	256	255	255

Таблица Ю11 – Аллельное состояние генов среди аборигенных сортов

№ п/п	Название сорта	VVIP60	VVIP60	VVIB01	VVIB01	VrZag83	VrZag83	VVMD27	VVMD27	VVMD21	VVMD21	VMC1B1	VMC1B1	VVIQ52	VVIQ52
1	Абинск № 3	Н/Д	Н/Д	281	291	188	201	186	190	Н/Д	Н/Д	167	167	76	76
2	Абинск № 5	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	216	218	Н/Д	Н/Д	Н/Д	Н/Д	78	78
3	Абинск№ 6	316	322	291	291	201	201	184	186	Н/Д	Н/Д	173	173	76	76
4	Абинск № 7	328	328	287	313	184	186	218	218	222	222	183	191	Н/Д	Н/Д
5	Абинск № 8	326	328	287	305	186	186	218	224	Н/Д	Н/Д	Н/Д	Н/Д	78	78
6	Абинск № 9	Н/Д	Н/Д	297	297	184	184	212	218	Н/Д	Н/Д	181	183	78	78
7	Аджем мискет	318	326	291	291	194	194	182	188	244	250	173	183	76	76
8	Аг изюм	317	321	289	295	188	190	180	195	249	249	173	185	78	82
9	Аккерманский черный	318	330	291	295	194	194	182	196	250	258	171	185	76	78
10	Аклык желтый	318	318	291	307	188	194	195	195	250	250	185	196	Н/Д	Н/Д
11	Аленький	318	322	289	295	188	190	180	196	244	268	167	189	76	82
12	Алый терский	318	322	291	291	190	194	182	195	244	258	167	185	76	82
13	Амет аджи ибрам	324	324	Н/Д	Н/Д	188	194	180	182	Н/Д	Н/Д	171	185	76	78
14	Асма	318	322	291	291	190	194	186	196	244	250	167	173	78	80
15	Байат капи	318	330	295	299	194	194	182	182	250	250	167	185	76	78
16	Богос зерва	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	182	182	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д
17	Бор кара	314	330	289	295	188	194	176	186	250	258	167	167	76	82
18	Борю изюм	Н/Д	Н/Д	295	295	188	194	190	195	Н/Д	Н/Д	185	185	82	82
19	Брускова- тенький	322	324	295	305	190	194	180	182	258	260	167	173	76	84
20	Будай шули	314	322	295	295	190	194	180	186	244	258	167	185	76	82
21	Буланый бе- лый	318	322	295	295	188	194	180	184	249	260	173	185	78	78
22	Чауш чабан	322	322	291	295	190	201	180	190	244	250	175	183	82	82

Таблица Ю12 – Аллельное состояние генов среди аборигенных сортов

№ п/п	Название сорта	VVIP60	VVIP60	VVIB01	VVIB01	VrZag83	VrZag83	VVMD27	VVMD27	VVMD21	VVMD21	VMC1B11	VMC1B11	VVIQ52	VVIQ52
23	Чолбер	318	330	291	295	194	194	180	182	244	244	185	185	78	82
24	Чоркутца розове	318	326	295	295	188	190	182	196	250	250	167	185	78	82
25	Даманка 1	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д
26	Даманка 7	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	76	80
27	Демир кара	318	326	291	295	188	188	180	188	249	258	183	185	76	76
28	Докур	318	322	291	295	194	194	186	186	250	252	175	185	76	82
29	Дубут шире цпитс	317	322	289	291	188	190	182	195	244	250	185	185	76	82
30	Джагар	322	322	289	295	188	194	182	186	252	258	185	185	Н/Д	Н/Д
31	Джеват кара	318	318	295	295	188	194	180	184	249	258	173	189	76	78
32	Джунга	318	322	295	295	188	190	180	194	260	260	Н/Д	Н/Д	76	80
33	Джварк	318	322	295	295	188	194	180	194	250	258	167	175	76	80
34	Ефремовский	318	318	295	295	190	194	180	180	258	258	167	189	78	82
35	Ефремовский второй	322	328	291	295	188	194	180	180	250	258	185	185	76	78
36	Емчек изюм	318	318	295	295	188	194	186	196	249	249	173	185	82	82
37	Галабура	320	332	291	295	194	194	180	186	249	249	173	183	76	80
38	Гендерил цибил	318	320	295	299	188	194	180	186	249	258	167	185	78	82
39	Гок ала	322	322	291	295	188	188	180	186	249	249	173	185	76	82
40	Гор. Ключ 1 новый	306	318	Н/Д	Н/Д	186	188	188	188	Н/Д	Н/Д	167	168	76	80
41	Гюляби белый	Н/Д	Н/Д	291	295	188	194	195	195	Н/Д	Н/Д	173	185	82	82
42	Гюляби дагестанский	322	330	291	295	188	194	182	195	244	252	175	185	76	82

Таблица Ю13 – Аллельное состояние генов среди аборигенных сортов

No	Название														
п/п	сорта	VVIP60	VVIP60	VVIB01	VVIB01	VrZag83	VrZag83	VVMD27	VVMD27	VVMD21	VVMD21	VMC1B11	VMC1B11	VVIQ52	VVIQ52
43	Ири тумут	Н/Д	Н/Д	291	295	188	188	186	196	258	274	167	185	82	82
44	Кабассия	324	332	295	295	194	194	186	195	250	250	171	183	76	82
45	Кайтаги	306	306	289	299	190	194	182	190	252	258	169	175	76	78
46	Кандаваста	322	328	297	297	188	194	182	188	244	250	167	185	78	82
47	Кечи эмчек черный	318	321	291	295	188	194	184	184	249	258	167	167	76	82
48	Хади тумут	Н/Д	Н/Д	297	297	188	190	180	194	250	250	173	185	78	82
49	Халили изюм	318	328	297	297	190	194	188	190	250	258	183	189	76	78
50	Харко	318	322	Н/Д	Н/Д	Н/Д	Н/Д	180	184	249	260	173	185	72	78
51	Хатал баар	322	330	295	295	188	194	190	193	244	244	185	185	76	78
52	Хатми	318	318	297	297	188	194	186	196	249	249	173	185	82	82
53	Херсонес- ский	306	306	291	295	188	194	180	188	249	258	183	185	78	78
54	Хоп халат	318	330	295	295	194	194	182	193	244	244	185	185	82	82
55	Хотса цибил	318	328	291	295	188	194	188	190	244	250	167	185	78	82
56	Хруптун белый	322	328	295	295	188	194	182	184	260	260	167	183	78	82
57	Кизиловый	324	324	291	295	188	194	180	188	249	249	173	183	76	78
58	Кизлярский синий	318	318	291	295	188	194	193	195	250	252	173	185	76	82
59	Кода гросса	318	322	295	295	188	188	182	196	250	250	171	185	82	82
60	Кок ала	Н/Д	Н/Д	291	295	188	188	180	186	249	252	173	185	Н/Д	Н/Д
61	Кок хабах	324	324	291	295	188	194	184	186	256	258	169	198	82	86
62	Кокурдес белый	318	318	295	307	194	194	186	188	244	258	173	185	Н/Д	Н/Д

Таблица Ю14 – Аллельное состояние генов среди аборигенных сортов

№ п/п	Название сорта	VVIP60	VVIP60	VVIB01	VVIB01	VrZag83	VrZag83	VVMD27	VVMD27	VVMD21	VVMD21	VMC1B11	VMC1B11	VVIQ52	VVIQ52
63	Кокурдес черный	318	322	291	295	194	194	180	182	244	250	183	185	76	82
64	Красностоп анапский	320	322	291	291	188	190	190	190	244	244	173	196	76	76
65	Красностоп золотовский	320	322	291	291	188	190	190	190	244	244	173	196	Н/Д	Н/Д
66	Краснянский	318	318	291	295	188	190	180	190	249	258	169	179	78	84
67	Крестовский	Н/Д	Н/Д	Н/Д	Н/Д	188	194	186	190	Н/Д	Н/Д	185	185	78	82
68	Кукан цибил	318	330	297	297	194	194	182	193	244	244	185	185	Н/Д	Н/Д
69	Кукановский	322	328	291	295	188	194	188	190	244	258	185	189	70	76
70	Кумшатский белый	Н/Д	Н/Д	295	295	194	201	186	195	Н/Д	Н/Д	175	185	76	82
71	Латсу кере	306	322	291	295	188	188	186	190	244	249	167	173	82	82
72	Лесной белый марагинский	318	322	289	289	188	190	180	195	249	249	169	173	76	84
73	Лизи хутсран	322	322	297	297	190	194	182	190	244	258	169	173	78	84
74	Майкоп № 1	Н/Д	Н/Д	Н/Д	Н/Д	190	201	184	184	Н/Д	Н/Д	167	167	80	80
75	Майкоп № 2	Н/Д	Н/Д	295	309	190	201	184	184	Н/Д	Н/Д	167	167	Н/Д	Н/Д
76	Майкоп № 3	Н/Д	Н/Д	Н/Д	Н/Д	190	201	184	184	Н/Д	Н/Д	167	167	80	80
77	Майкоп № 4	Н/Д	Н/Д	295	295	188	201	180	190	Н/Д	Н/Д	169	169	76	76
78	Майкоп № 5	Н/Д	Н/Д	295	309	190	201	184	184	Н/Д	Н/Д	167	167	76	76
79	Майкоп № 7	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д
80	Махбор цибил	318	320	291	299	194	194	193	195	250	250	167	185	78	82
81	Мисгюли кара	318	318	291	295	188	201	182	184	258	258	171	189	74	78
82	Мола гусейн цибил	318	322	295	295	188	188	182	186	Н/Д	Н/Д	173	173	82	82

Таблица Ю15 – Аллельное состояние генов среди аборигенных сортов

				_		_	_								
№ п/п	Название сорта	VVIP60	VVIP60	VVIB01	VVIB01	VrZag83	VrZag83	VVMD27	VVMD27	VVMD21	VVMD21	VMC1B11	VMC1B11	VVIQ52	VVIQ52
83	Мствивани мескхури	318	318	295	307	194	194	186	195	250	250	167	185	82	82
84	Нарма	306	306	291	295	188	194	184	196	252	268	185	185	78	82
85	Пухляковский	Н/Д	Н/Д	295	295	188	188	180	182	258	258	183	185	78	82
86	Риш баба	318	318	295	295	188	194	182	186	244	250	167	175	76	78
87	Риш баба розовый	318	318	291	291	188	201	182	184	258	258	171	189	76	78
88	Сафта дурмаз	314	330	291	295	188	194	180	194	244	244	167	167	76	80
89	Сары кокур	322	322	295	298	188	194	184	186	244	249	167	173	78	82
90	Сары пандас	318	318	291	307	188	194	182	188	250	250	171	173	78	78
91	Шабаш	322	326	291	295	194	194	180	186	244	258	169	183	78	80
92	Шампанчик	Н/Д	Н/Д	Н/Д	Н/Д	188	190	182	186	Н/Д	Н/Д	173	185	82	82
93	Шампанчик бессергеневский	318	318	295	295	188	190	180	180	244	252	173	198	78	82
94	Шавбарда	318	332	291	295	188	190	186	190	258	258	169	169	80	84
95	Шавраны	318	318	291	295	190	194	182	195	244	258	167	185	76	82
96	Шилохвостый	Н/Д	Н/Д	295	299	188	188	186	195	250	258	185	185	82	82
97	Сибирьковый	318	322	295	295	188	194	180	182	260	260	167	183	78	82
98	Тавлинский черный	318	318	295	299	188	190	182	186	244	250	173	175	76	82
99	Тавлинский поздний	318	322	291	295	188	194	182	193	244	250	185	185	76	82
100	Толстокорый	318	318	295	295	188	190	182	186	249	249	173	185	82	82
101	Цимлянский белый	318	320	295	299	188	190	184	186	Н/Д	Н/Д	Н/Д	Н/Д	76	78
102	Тумут кара	Н/Д	Н/Д	299	299	194	194	182	190	Н/Д	Н/Д	169	175	76	78

Таблица Ю16 – Аллельное состояние генов среди аборигенных сортов

№ п/п	Название сорта	VVIP60	VVIP60	VVIB01	VVIB01	VrZag83	VrZag83	VVMD27	VVMD27	VVMD21	VVMD21	VMC1B11	VMC1B11	VVIQ52	VVIQ52
103	Турба плотная белая	322	330	295	299	188	188	186	196	250	250	167	183	76	82
104	Варюшкин	322	324	291	295	190	194	186	195	244	250	171	185	82	82
105	Йай изюм белый	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	184	184	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д
106	Яных зерва	Н/Д	Н/Д	291	291	194	194	186	186	Н/Д	Н/Д	175	179	76	78
107	Желудёвый	Н/Д	Н/Д	Н/Д	Н/Д	194	201	190	192	Н/Д	Н/Д	173	196	78	82

Таблица Ю17 – Аллельное состояние генов среди аборигенных сортов

№ п/п	Название сорта	VrZag67	VrZag67	VVIV37	VVIV37	VVIH54	VVIH54	VVMD24	VVMD24	VVIV67	VVIV67	VVIN73	VVIN73	VMC4f3.1	VMC4f3.1
1	Абинск № 3	151	151	150	160	151	163	210	212	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д
2	Абинск № 5	153	153	148	160	Н/Д	Н/Д	202	204	Н/Д	Н/Д	Н/Д	Н/Д	169	177
3	Абинск№ 6	151	151	160	166	143	163	206	210	370	372	266	266	177	207
4	Абинск № 7	153	157	160	160	143	175	202	206	364	367	256	256	169	177
5	Абинск № 8	153	171	148	148	Н/Д	Н/Д	202	206	364	369	Н/Д	Н/Д	169	177
6	Абинск № 9	153	153	148	160	163	175	202	206	Н/Д	Н/Д	256	256	177	177
7	Аджем мискет	121	145	160	160	165	165	206	210	358	366	266	270	165	181
8	Аг изюм	143	148	150	158	165	165	206	206	357	361	266	266	171	203
9	Аккерманский черный	151	155	Н/Д	Н/Д	167	175	206	206	358	364	266	266	165	165
10	Аклык желтый	127	135	160	178	151	165	206	214	358	376	264	266	177	187
11	Аленький	135	151	160	160	163	165	206	210	357	375	264	266	Н/Д	Н/Д
12	Алый терский	121	121	160	160	151	165	206	215	359	376	266	266	177	181
13	Амет аджи ибрам	135	145	156	160	165	165	206	206	Н/Д	Н/Д	Н/Д	Н/Д	165	171
14	Асма	121	127	148	148	139	165	206	215	364	373	266	266	181	181
15	Байат капи	121	149	150	168	163	165	208	215	361	373	266	268	185	185
16	Богос зерва	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д
17	Бор кара	121	145	164	168	139	139	206	214	358	368	266	268	161	177
18	Борю изюм	121	127	168	174	165	167	206	210	357	365	Н/Д	Н/Д	165	177
19	Брусковатенький	121	135	150	168	163	165	204	215	365	373	266	266	171	209
20	Будай шули	121	135	158	166	133	141	204	214	379	400	266	266	173	181

Таблица Ю18 – Аллельное состояние генов среди аборигенных сортов

	·			1			I		1	1	1	T	1		,
№ п/п	Название сорта	VVIP60	VVIP60	VVIB01	VVIB01	VrZag83	VrZag83	VVMD27	VVMD27	VVMD21	VVMD21	VMC1B11	VMC1B11	VVIQ52	VVIQ52
21	Буланый белый	135	145	160	168	151	165	206	206	365	365	266	270	165	165
22	Чауш чабан	149	149	150	172	159	167	206	206	357	364	266	266	171	209
23	Чолбер	135	149	158	168	139	165	210	215	357	375	266	266	171	187
24	Чоркутца розове	145	155	158	158	163	165	210	215	358	365	266	266	161	167
25	Даманка 1	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д
26	Даманка 7	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д
27	Демир кара	121	121	158	168	165	165	206	206	357	376	258	270	161	161
28	Докур	123	155	156	174	151	165	206	210	357	357	258	266	173	203
29	Дубут шире цпитс	135	151	158	166	163	165	206	215	372	375	266	266	165	185
30	Джагар	135	151	170	180	163	165	204	206	357	373	266	266	203	203
31	Джеват кара	135	145	162	162	165	177	206	206	376	382	266	270	165	173
32	Джунга	121	145	150	156	165	167	206	206	357	382	266	266	Н/Д	Н/Д
33	Джварк	121	127	Н/Д	Н/Д	165	167	206	210	358	358	266	266	165	181
34	Ефремовский	151	155	148	172	165	165	206	215	Н/Д	Н/Д	Н/Д	Н/Д	165	165
35	Ефремовский второй	135	135	156	160	165	167	206	206	364	364	266	266	165	171
36	Емчек изюм	127	143	160	178	151	167	206	210	376	376	258	266	173	177
37	Галабура	145	155	162	162	165	167	206	206	357	364	266	266	165	165
38	Гендерил цибил	127	145	150	162	Н/Д	Н/Д	206	206	366	366	258	266	171	185
39	Гок ала	121	143	160	168	151	151	206	215	358	398	258	266	173	188
40	Гор. Ключ 1 новый	129	149	150	150	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	258	266	171	177

Таблица Ю19 – Аллельное состояние генов среди аборигенных сортов

№ п/п	Название сорта	VVIP60	VVIP60	VVIB01	VVIB01	VrZag83	VrZag83	VVMD27	VVMD27	VVMD21	VVMD21	VMC1B11	VMC1B11	VVIQ52	VVIQ52
41	Гюляби белый	123	127	168	176	Н/Д	Н/Д	206	210	Н/Д	Н/Д	Н/Д	Н/Д	177	203
42	Гюляби дагестан- ский	143	148	158	160	163	165	210	210	357	375	266	266	171	203
43	Ири тумут	127	151	160	169	151	165	206	206	357	357	Н/Д	Н/Д	187	203
44	Кабассия	154	155	162	162	165	165	206	215	357	364	266	266	165	171
45	Кайтаги	121	129	150	168	139	167	214	214	359	359	258	266	171	187
46	Кандаваста	127	145	160	174	165	165	206	206	357	361	266	266	165	165
47	Кечи эмчек черный	121	135	150	158	163	165	206	206	Н/Д	Н/Д	Н/Д	Н/Д	167	203
48	Хади тумут	121	149	150	156	165	167	206	215	357	361	Н/Д	Н/Д	173	185
49	Халили изюм	121	127	158	170	165	173	204	206	358	366	266	266	165	181
50	Харко	121	125	160	168	151	165	206	206	365	382	266	270	165	165
51	Хатал баар	127	145	160	170	163	165	210	215	373	375	266	268	165	171
52	Хатми	127	143	158	158	151	167	206	210	376	376	258	266	173	177
53	Херсонесский	121	145	160	168	163	165	206	206	355	381	258	266	177	181
54	Хоп халат	127	149	150	168	139	165	215	215	373	376	258	266	171	191
55	Хотса цибил	121	127	156	158	165	165	206	208	357	375	258	266	177	187
56	Хруптун белый	121	135	160	168	163	163	206	206	357	359	266	266	165	165
57	Кизиловый	121	145	160	166	165	165	206	210	357	357	258	270	201	201
58	Кизлярский синий	127	143	158	158	151	165	206	214	358	378	266	266	177	203
59	Кода гросса	135	145	160	160	167	177	206	215	365	365	266	266	171	171
60	Кок ала	121	143	170	180	151	151	210	215	358	360	Н/Д	Н/Д	187	203

Таблица Ю20 – Аллельное состояние генов среди аборигенных сортов

	1	T	T	г	_		_		1	ı	ı	Т	Т		1
№ п/п	Название сорта	VVIP60	VVIP60	VVIB01	VVIB01	VrZag83	VrZag83	VVMD27	VVMD27	VVMD21	VVMD21	VMC1B11	VMC1B11	VVIQ52	VVIQ52
61	Кок хабах	121	147	156	174	165	165	204	206	357	359	258	266	165	187
62	Кокурдес белый	121	151	156	156	165	165	206	215	357	357	266	266	181	187
63	Кокурдес черный	121	127	150	160	165	175	206	215	358	366	266	266	186	209
64	Красностоп анапский	135	145	160	166	163	165	210	214	355	367	258	266	161	173
65	Красностоп золотовский	135	145	160	166	163	165	210	215	355	367	258	266	171	171
66	Краснянский	121	151	154	166	139	163	206	206	374	374	266	266	Н/Д	Н/Д
67	Крестовский	121	129	176	178	Н/Д	Н/Д	206	210	375	375	Н/Д	Н/Д	177	185
68	Кукан цибил	127	149	150	170	159	165	204	215	373	376	258	266	171	191
69	Кукановский	121	121	158	158	165	173	206	206	357	367	258	266	177	209
70	Кумшатский белый	135	151	148	168	Н/Д	Н/Д	204	215	357	357	Н/Д	Н/Д	181	187
71	Латсу кере	121	135	152	158	139	165	206	206	358	358	258	258	173	177
72	Лесной белый марагинский	135	143	168	174	163	165	206	206	357	372	258	266	173	185
73	Лизи хутсран	121	135	168	174	167	167	206	214	359	373	266	266	181	185
74	Майкоп № 1	151	151	162	162	159	163	210	212	Н/Д	Н/Д	Н/Д	Н/Д	205	207
75	Майкоп № 2	151	151	162	162	159	163	210	212	Н/Д	Н/Д	Н/Д	Н/Д	205	207
76	Майкоп № 3	151	152	162	162	159	163	210	212	370	379	Н/Д	Н/Д	205	207
77	Майкоп № 4	151	152	162	162	163	163	214	214	Н/Д	Н/Д	266	266	171	171
78	Майкоп № 5	151	152	162	162	159	163	210	212	Н/Д	Н/Д	266	266	205	207
79	Майкоп № 7	129	137	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д
80	Махбор цибил	127	145	158	178	165	167	210	214	375	377	258	266	177	185

Таблица Ю21 – Аллельное состояние генов среди аборигенных сортов

	1		1	1		1	1				1		1	1	1
№ п/п	Название сорта	VVIP60	VVIP60	VVIB01	VVIB01	VrZag83	VrZag83	VVMD27	VVMD27	VVMD21	VVMD21	VMC1B11	VMC1B11	VVIQ52	VVIQ52
81	Мисгюли кара	127	135	156	158	165	167	206	210	376	376	266	266	173	185
82	Мола гусейн цибил	143	147	152	152	Н/Д	Н/Д	206	206	357	361	Н/Д	Н/Д	165	203
83	Мствивани мескхури	127	143	164	168	167	167	204	210	361	363	258	266	171	187
84	Нарма	127	155	Н/Д	Н/Д	Н/Д	Н/Д	206	206	358	358	Н/Д	Н/Д	175	203
85	Пухляковский	135	145	156	168	165	165	206	206	357	357	Н/Д	Н/Д	165	209
86	Риш баба	123	155	150	156	165	177	210	215	357	391	266	266	169	205
87	Риш баба розовый	127	135	158	160	165	167	204	208	376	379	266	266	173	185
88	Сафта дурмаз	121	127	164	168	165	165	206	210	358	373	266	266	179	185
89	Сары кокур	121	121	174	174	165	167	206	206	357	382	266	270	165	167
90	Сары пандас	145	151	156	156	165	173	206	208	357	375	266	266	181	185
91	Шабаш	121	148	158	160	151	171	206	208	357	365	266	266	165	187
92	Шампанчик	121	135	150	158	Н/Д	Н/Д	206	210	357	367	Н/Д	Н/Д	171	203
93	Шампанчик бессергеневский	127	135	166	168	165	165	206	210	357	357	266	266	177	181
94	Шавбарда	145	151	164	166	163	165	206	206	372	372	258	266	185	185
95	Шавраны	121	121	160	160	151	165	206	215	359	375	266	266	177	181
96	Шилохвостый	127	145	156	176	151	167	206	210	364	364	Н/Д	Н/Д	165	203
97	Сибирьковый	145	145	156	160	151	165	206	206	357	381	266	266	165	165
98	Тавлинский черный	121	155	156	156	167	167	206	214	357	361	258	266	165	177
99	Тавлинский поздний	127	151	150	150	165	177	206	214	373	376	266	266	171	177
100	Толстокорый	129	135	152	160	165	165	206	210	357	373	266	266	171	203

Таблица Ю22 – Аллельное состояние генов среди аборигенных сортов

№ п/п	Название сорта	VVIP60	VVIP60	VVIB01	VVIB01	VrZag83	VrZag83	VVMD27	VVMD27	VVMD21	VVMD21	VMC1B11	VMC1B11	VVIQ52	VVIQ52
101	Цимлянский белый	121	137	156	168	147	165	204	206	348	365	258	266	169	171
102	Тумут кара	121	129	150	168	167	167	215	215	358	359	258	266	171	181
103	Турба плотная белая	135	145	150	160	167	167	206	206	357	365	266	268	171	171
104	Варюшкин	127	155	160	172	165	165	206	215	357	367	266	266	171	185
105	Йай изюм белый	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д	Н/Д
106	Яных зерва	135	135	164	174	165	167	210	215	357	357	258	266	165	177
107	Желудёвый	121	155	160	160	167	167	206	206	327	364	Н/Д	Н/Д	161	171

Таблица Ю23 – Аллельное состояние генов среди аборигенных сортов

№ п/п	11	VVIN16	VVIN16	VVIP31	VVIP31	№ п/п	П	VVIN16	VVIN16	VVIP31	VVIP31
J\0 II/II	Название сорта						Название сорта				
1	Абинск № 3	Н/Д	Н/Д	171	181	21	Буланый белый	149	149	187	193
2	Абинск № 5	151	151	Н/Д	Н/Д	22	Чауш чабан	149	159	179	187
3	Абинск№ 6	151	153	193	193	23	Чолбер	153	153	177	181
4	Абинск № 7	151	151	195	199	24	Чоркутца розове	149	151	175	187
5	Абинск № 8	151	151	177	195	25	Даманка 1	Н/Д	Н/Д	Н/Д	Н/Д
6	Абинск № 9	149	165	177	203	26	Даманка 7	Н/Д	Н/Д	Н/Д	Н/Д
7	Аджем мискет	149	151	181	181	27	Демир кара	149	149	175	183
8	Аг изюм	153	153	177	187	28	Докур	153	153	187	189
9	Аккерманский черный	Н/Д	Н/Д	172	181	29	Дубут шире цпитс	149	151	187	193
10	Аклык желтый	149	151	177	193	30	Джагар	149	153	175	193
11	Аленький	149	153	181	181	31	Джеват кара	149	151	155	171
12	Алый терский	149	151	175	185	32	Джунга	151	153	Н/Д	Н/Д
13	Амет аджи ибрам	151	151	177	181	33	Джварк	151	151	177	177
14	Асма	149	151	185	185	34	Ефремовский	151	153	171	181
15	Байат капи	153	153	177	187	35	Ефремовский второй	149	149	181	181
16	Богос зерва	Н/Д	Н/Д	Н/Д	Н/Д	36	Емчек изюм	153	153	177	183
17	Бор кара	149	151	175	193	37	Галабура	149	149	181	181
18	Борю изюм	153	153	175	189	38	Гендерил цибил	151	153	177	181
19	Брусковатенький	149	153	177	181	39	Гок ала	153	153	177	187
20	Будай шули	149	151	185	193	40	Гор. Ключ 1 новый	153	153	179	179

Таблица Ю24 – Аллельное состояние генов среди аборигенных сортов

			_	-	-						
№ п/п	Название сорта	VVIN16	VVIN16	VVIP31	VVIP31	№ п/п	Название сорта	VVIN16	VVIN16	VVIP31	VVIP31
41	Гюляби белый	151	153	175	177	61	Кок хабах	149	151	177	189
42	Гюляби дагестанский	153	153	181	183	62	Кокурдес белый	153	153	175	177
43	Ири тумут	153	153	175	181	63	Кокурдес черный	149	151	177	193
44	Кабассия	149	149	181	189	64	Красностоп анапский	149	151	175	189
45	Кайтаги	151	153	172	185	65	Красностоп золотовский	149	151	175	189
46	Кандаваста	149	151	175	187	66	Краснянский	149	149	171	193
47	Кечи эмчек черный	151	153	171	171	67	Крестовский	153	153	177	179
48	Хади тумут	Н/Д	Н/Д	187	189	68	Кукан цибил	153	153	175	187
49	Халили изюм	149	151	181	193	69	Кукановский	149	149	181	193
50	Харко	149	149	187	193	70	Кумшатский белый	149	157	172	181
51	Хатал баар	149	151	177	187	71	Латсу кере	151	153	181	189
52	Хатми	153	153	177	183	72	Лесной белый марагин- ский	153	157	177	177
53	Херсонесский	151	153	181	181	73	Лизи хутсран	154	159	181	193
54	Хоп халат	153	153	175	187	74	Майкоп № 1	149	151	181	193
55	Хотса цибил	153	153	179	187	75	Майкоп № 2	Н/Д	Н/Д	179	193
56	Хруптун белый	149	149	187	193	76	Майкоп № 3	149	151	181	193
57	Кизиловый	149	149	175	187	77	Майкоп № 4	151	151	177	193
58	Кизлярский синий	153	153	179	183	78	Майкоп № 5	151	153	181	193
59	Кода гросса	149	149	171	181	79	Майкоп № 7	Н/Д	Н/Д	Н/Д	Н/Д
60	Кок ала	Н/Д	Н/Д	177	187	80	Махбор цибил	149	153	171	179

Таблица Ю25 – Аллельное состояние генов среди аборигенных сортов

№ п/п	Название сорта	VVIN16	VVIN16	VVIP31	VVIP31	№ п/п	Название сорта	VVIN16	VVIN16	VVIP31	VVIP31
81	Мисгюли кара	149	151	171	173	100	Толстокорый	153	153	177	183
82	Мола гусейн цибил	149	151	183	193	101	Цимлянский белый	149	157	177	185
83	Мствивани мескхури	149	151	171	193	102	Тумут кара	151	153	172	185
84	Нарма	153	153	175	187	103	Турба плотная белая	149	151	172	187
85	Пухляковский	151	151	177	181	104	Варюшкин	149	151	177	181
86	Риш баба	149	153	187	193	105	Йай изюм белый	Н/Д	Н/Д	Н/Д	Н/Д
87	Риш баба розовый	149	151	171	173	106	Яных зерва	153	153	183	185
88	Сафта дурмаз	149	157	187	187	107	Желудёвый	155	159	187	191
89	Сары кокур	153	153	177	187						
90	Сары пандас	149	151	181	187						
91	Шабаш	149	151	177	183						
92	Шампанчик	153	153	177	177						
93	Шампанчик бессергеневский	149	149	177	189						
94	Шавбарда	151	153	181	181						
95	Шавраны	149	151	175	185						
96	Шилохвостый	151	153	177	181						
97	Сибирьковый	149	149	193	193						
98	Тавлинский черный	154	159	177	187						
99	Тавлинский поздний	149	151	187	187						

Приложение Я

Сравнение между методами при определении размеров аллелей

Таблица Я1 – Сравнение между методами при определении размеров аллелей

Полиакриламидный гель	VrZag62	VrZag62	VrZag79	VrZag79	VVMD5	VVMD5	VVMD7	VVMD7	VVMD27	VVMD27	VVS2	VVS2
Рислинг алькадар 34	194	194	243	245	228	236	249	257	182	190	143	151
Рислинг алькадар 34а	194	194	243	245	228	236	249	257	182	190	143	151
Секвенатор ABIPrism 3130 xl	VrZag62	VrZag62	VrZag79	VrZag79	VVMD5	VVMD5	VVMD7	VVMD7	VVMD27	VVMD27	VVS2	VVS2
Рислинг алькадар 34	194	206	243	245	229	237	249	257	182	190	Н/Д	Н/Д
Рислинг алькадар 34а	194	194	243	245	229	237	249	257	182	194	Н/Д	Н/Д

Из таблицы 36 можно сделать вывод, что методы, используемые в нашей работе, показывают свою эффективность. Отличия, выявленные в процессе работы на генетическом анализаторе, выделены жирным шрифтом. Образцы ДНК данных клонов взяты с одних и тех же кустов.

Приложение А

Листовые пластинки изучаемого дикорастущиего винограда

Рисунок A1 — Листовая пластинка куста Абинск № 6

Рисунок A2 — Листовая пластинка куста Майкоп № 1

Рисунок A3 — Листовая пластинка куста Майкоп № 2

Рисунок A4 — Листовая пластинка куста Майкоп № 3

Рисунок A5 — Листовая пластинка куста Майкоп № 4

Рисунок A6 — Листовая пластинка куста Майкоп № 5

Рисунок *А7*— Листовая пластинка куста Майкоп № 6

Рисунок A8 — Листовая пластинка куста Майкоп № 7

Приложение В

Диплом за 3 место в 3 этапе Всероссийского конкурса на лучшую научную работу среди студентов, аспирантов и молодых ученых вузов Минсельхоза РФ в номинации «Биологические науки»

Пино гри

Показатель	Название					
Показатель	Пино гри	Пиногрик				
Урожайность, средняя	_	_				
с 1 куста, кг	3,12	4,21				
с 1 гектара, ц	103,25	138				
Средняя масса грозди, г	115	125				
Средняя масса ягоды, г	1,3	1,5				
Содержание сахаров в ягодах при их съемной зрелости, г/100 см ³	23,7	23,8				
Содержание титруемых						
кислот в ягодах при их съемной зрелости, $\Gamma/дм^3$	7,1	7,4				
Дегустационная оценка вина, балл	7,7	7,8				

Приложение D Сравнение агробиологических показателей клона Семядисятилетие Победы с сортом Солярис

	Название					
Показатель	Солярис	Семядисятилетие Победы				
Урожайность, средняя	_	_				
с 1 куста, кг	6,51	8,25				
с 1 гектара, ц	108,4	135,7				
Средняя масса грозди, г	122,0	268,0				
Средняя масса ягоды, г	1,35	1,75				
Содержание сахаров в ягодах при их съемной зрелости, г/100 см ³	18,57	18,7				
Содержание титруемых кислот в ягодах при их съемной зрелости, г/дм ³	7,4	7,31				